Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models...Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes.展开更多
This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an ...This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an adaptive exponential reaching law with a continuous barrier function,the proposed approach eliminates chattering and ensures robust performance under model uncertainties.The methodology combines adaptive SMC with dynamic switching to estimate and compensates for unknown uncertainties,providing smooth and stable control.Finally,the performance and effectiveness of the proposed approach are compared with those of a previous study.展开更多
This study was part of the framework that contributed not only to the improvement of thermal comfort in housing but also to the decarbonization of the construction and building materials industry. For this purpose, te...This study was part of the framework that contributed not only to the improvement of thermal comfort in housing but also to the decarbonization of the construction and building materials industry. For this purpose, terracotta brick seems to meet these needs. Thus, the objective of this work was to evaluate the influence of the incorporation of coal fly ash from a thermal power plant on the physical and mechanical properties of fired bricks from grey clay in the Thicky area of Senegal. The coal fly ash was incorporated into the raw clay material in proportions of 0, 5, 10, and 15 % by weight. These two raw materials were first characterized by X-ray fluorescence spectroscopy (XRF). The XRF analyses showed that the most abundant oxides in clay were SiO2 (55.034%) and Fe2O3 (10.155%). In coal fly ash, SiO2 (38.574%) is predominant. The ash also contained Al2O3 (7.717%) and alicano-earthy melting oxides such as CaO (9.271%) and MgO (7.298%) etc. These melting oxides were necessary to facilitate the formation of the liquid phase when baking platelets. The latter, when burned at a temperature of 880°C, were characterized by determining the number of physico-mechanical parameters, such as linear shrinkage during cooking, water absorption, fire loss and compressive strength. A Hierarchical Ascending Classification of these different parameters was performed and three classes were obtained. Class 1 with better compressive strength (6.358 MPa), was in sample A (5%). Class 2 consisted of sample D (reference) and had a higher plasticity index (28.51%) and water absorption rate (11.19%). Finally, class 3, which included samples B (10%) and C (15%), had very high shrinkage and fire losses compared to other platelets. These results highlighted the possibility of using up to 5% of the coal fly ash in the production of new fired bricks with good performance.展开更多
Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement...Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.展开更多
Kinetics of the gas-phase reactions of•OH radicals with a series of fluoroesters were studied for the first time at 298±3 K and atmospheric pressure.Relative rate coefficients were determined by in situ FTIR spec...Kinetics of the gas-phase reactions of•OH radicals with a series of fluoroesters were studied for the first time at 298±3 K and atmospheric pressure.Relative rate coefficients were determined by in situ FTIR spectroscopy in nitrogen and GC-FID in air to monitor the decay of reactants and references.The following coefficient values(in 10^(−12)cm^(3)/(molecule•sec))were obtained for ethyl fluoroacetate(EFA),ethyl 4,4,4-trifluorobutyrate(ETB),and butyl fluoroacetate(BFA),respectively:k_(1)(EFA+OH)=1.15±0.25 by FTIR and 1.34±0.23 by GC-FID;k_(2)(ETB+OH)=1.61±0.36 by FTIR and 2.02±0.30 by GC-FID;k_(3)(BFA+OH)=2.24±0.37 by FTIR.Reactivity trends were developed and correlated with the number of CH_(3)and F substituents in the fluoroester,and structure-activity relationships(SARs)calculations were performed.In addition,the tropospheric lifetimes of EFA,ETB,and BFA upon degradation by OH radicals were calculated to be 9,6,and 5 days,respectively,indicating that these fluorinated compounds could have a possible regional effect from the emission source.Relatively small photochemical ozone creation potentials of 9,7,and 19 were estimated for EFA,ETB,and BFA,respectively.The GlobalWarming Potentials(GWPs)for EFA,ETB,and BFA were calculated for different time horizons.For a 20-year time horizon,the GWPs were 1.393,0.063,and 0.062,respectively.In the case of a 100-year time horizon,the GWPs were 0.379,0.017,and 0.017,and for a 500-year time horizon,the GWPs were 0.108,0.005,and 0.005 for EFA,ETB,and BFA.展开更多
Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movement...Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movements and result in cracking of structures erected upon them. The present research focuses on characterizing the behavior of pavements erected on expansive clays subjected to swelling and shrinkage cycles. Direct shear tests and oedometer tests were conducted in the laboratory on samples of expansive soils undergoing swelling-shrinkage cycles. The experimental data reveal a significant decrease in shear strength, evidenced by a reduction in shear parameters (internal friction angle, cohesion) and a decrease in the modulus of elasticity as the number of cycles increases. A numerical model based on the finite element method was developed to simulate the behavior of a pavement on an expansive clay substrate. The model results indicate an increase in total displacements with the increase in the number of shrinkage-swelling cycles, demonstrating a progressive degradation of the soil’s mechanical behavior. This study contributes to a better understanding of the complex phenomena governing the behavior of expansive soils and serves as a foundation for developing effective management and mitigation strategies for road infrastructures.展开更多
Rate coefficients of the gas-phase reactions of Cl atoms with a series of fluorinated diketones(FDKs):CF_(3)C(O)CH_(2)C(O)CH_(3)(TFP),CF_(3)C(O)CH_(2)C(O)CH_(2)CH_(3)(TFH)and CF_(3)C(O)CH_(2)C(O)CH(CH_(3))2(TFMH),have...Rate coefficients of the gas-phase reactions of Cl atoms with a series of fluorinated diketones(FDKs):CF_(3)C(O)CH_(2)C(O)CH_(3)(TFP),CF_(3)C(O)CH_(2)C(O)CH_(2)CH_(3)(TFH)and CF_(3)C(O)CH_(2)C(O)CH(CH_(3))2(TFMH),have been measured at(298±2)K and under atmospheric pressure.The experiments were performed using the relative-rate method with a GC-FID detection system.From different determinations and references used,the following rate coefficients were obtained(in cm3/(molecule·sec)):k_(4)(TFP+Cl)=(1.75±0.21)×10^(−10),k_(5)(TFH+Cl)=(2.05±0.23)×10^(−10),k_(6)(TFMH+Cl)=(2.71±0.34)×10^(−10).Reactivity trends of FDKs were discussed and Free Energy Relationships analysis was developed.The expression lgkOH=1.68 lgkCl+5.71 was obtained for the reactivity of the studied FDKs together with similar unsaturated VOCs with Cl and OH radicals Additionally,acetic acid(CH_(3)C(O)OH)and trifluoroacetic acid(CF_(3)C(O)OH)were positively identified and quantified as degradation products using in situ FTIR spectroscopy.According to the identified products,atmospheric chemical mechanisms were proposed.The atmospheric implications of the studied reactions were assessed by the estimation of the tropospheric lifetimes of TFP,TFH,and TFMH concerning their reaction with Cl atoms to be 48,41,and 31 hours,respectively.The relatively short residence in the atmosphere of the fluorocarbons studied will have a local/regional impact with restricted transport.Global warming potential(GWP(20 yr))calculated for the studied fluoro diketones were 0.014,0.003 and 0.001 for TFP,TFH and TFMH,respectively with a negligible contribution to the greenhouse effect.展开更多
Jerada coal mining generates extensive coal mine waste rock(CMWR)piles rich in valuable minerals,posing environmental challenges and economic opportunities.This study examines reprocessing feasibility through 3D geome...Jerada coal mining generates extensive coal mine waste rock(CMWR)piles rich in valuable minerals,posing environmental challenges and economic opportunities.This study examines reprocessing feasibility through 3D geometallurgical characterization.Sampling used down the hole hammer drilling technique(DTH)and drone surveys for topographical precision.Over 620 samples from(T01,T02,T08)underwent comprehensive analyses including particle size distribution,x-ray fluorescence(XRF),total sulfur/carbon analysis(S/C),and inductively coupled plasma mass spectrometry(ICP-MS)for physical-chemical characterization.Mineralogical aspects were explored via optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),electron probe microanalysis(EPMA),and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS).Quantitative mineral evaluation by scanning electron microscope(QEMSCAN)provided mineral insights.Chemical data was used in a 3D block model to quantify residual coal.Results for the three examined CMWR piles(T01,T02,and T08)showed varying D80 from 160 to 300μm,notable carbon content averaged 12.5 wt%(T01),16 wt%(T02),and 8.5 wt%(T08).Sulfur presence exceeded 1 wt%in T08,and potential environmental concerns due to iron sulfides.Anthracite liberation was below 30 wt%.3D modeling estimated a total volume of 7 Mm3,mainly from T08,equaling 11.2 Mt.With its high carbon content and substantial tonnages,re-exploitation or alternative applications could minimize these CMWR piles environmental impact.展开更多
The aim of the present study was to evaluate the effects of baobab seed washing and origin on the chemical composition of the oil extracted by pressing. Six (6) oil samples were obtained from seeds of three (3) geogra...The aim of the present study was to evaluate the effects of baobab seed washing and origin on the chemical composition of the oil extracted by pressing. Six (6) oil samples were obtained from seeds of three (3) geographical origins. The identification and quantification of fatty acids and the polyphenolic profile were carried out by GC-MS and HPLC-UV, respectively. Analysis of fatty acid methyl esters allowed the identification and quantification of 18 fatty acids. Oils from unwashed seeds were richer in palmitic (C16:0), stearic (C18:0), oleic (C18:1) and arachidic (C20:0) acids. In addition, HPLC-UV analysis at 279 nm shows that oils from unwashed seeds are richer in tyrosol, hydroxytyrosol and caffeic acid. With regard to the polyphenolic profile, gallic acid and quercetin were not detected in these baobab oils. Principal component analysis of fatty acid and phenolic compound content showed that oils from unwashed seeds would best preserve their chemical and associated potential bioactive characteristics.展开更多
文摘Traffic forecasting with high precision aids Intelligent Transport Systems(ITS)in formulating and optimizing traffic management strategies.The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity.To address this problem,this paper uses the Tree-structured Parzen Estimator(TPE)to tune the hyperparameters of the Long Short-term Memory(LSTM)deep learning framework.The Tree-structured Parzen Estimator(TPE)uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples.This ensures fast convergence in tuning the hyperparameter values in the deep learning model for performing prediction while still maintaining a certain degree of accuracy.It also overcomes the problem of converging to local optima and avoids timeconsuming random search and,therefore,avoids high computational complexity in prediction accuracy.The proposed scheme first performs data smoothing and normalization on the input data,which is then fed to the input of the TPE for tuning the hyperparameters.The traffic data is then input to the LSTM model with tuned parameters to perform the traffic prediction.The three optimizers:Adaptive Moment Estimation(Adam),Root Mean Square Propagation(RMSProp),and Stochastic Gradient Descend with Momentum(SGDM)are also evaluated for accuracy prediction and the best optimizer is then chosen for final traffic prediction in TPE-LSTM model.Simulation results verify the effectiveness of the proposed model in terms of accuracy of prediction over the benchmark schemes.
文摘This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an adaptive exponential reaching law with a continuous barrier function,the proposed approach eliminates chattering and ensures robust performance under model uncertainties.The methodology combines adaptive SMC with dynamic switching to estimate and compensates for unknown uncertainties,providing smooth and stable control.Finally,the performance and effectiveness of the proposed approach are compared with those of a previous study.
文摘This study was part of the framework that contributed not only to the improvement of thermal comfort in housing but also to the decarbonization of the construction and building materials industry. For this purpose, terracotta brick seems to meet these needs. Thus, the objective of this work was to evaluate the influence of the incorporation of coal fly ash from a thermal power plant on the physical and mechanical properties of fired bricks from grey clay in the Thicky area of Senegal. The coal fly ash was incorporated into the raw clay material in proportions of 0, 5, 10, and 15 % by weight. These two raw materials were first characterized by X-ray fluorescence spectroscopy (XRF). The XRF analyses showed that the most abundant oxides in clay were SiO2 (55.034%) and Fe2O3 (10.155%). In coal fly ash, SiO2 (38.574%) is predominant. The ash also contained Al2O3 (7.717%) and alicano-earthy melting oxides such as CaO (9.271%) and MgO (7.298%) etc. These melting oxides were necessary to facilitate the formation of the liquid phase when baking platelets. The latter, when burned at a temperature of 880°C, were characterized by determining the number of physico-mechanical parameters, such as linear shrinkage during cooking, water absorption, fire loss and compressive strength. A Hierarchical Ascending Classification of these different parameters was performed and three classes were obtained. Class 1 with better compressive strength (6.358 MPa), was in sample A (5%). Class 2 consisted of sample D (reference) and had a higher plasticity index (28.51%) and water absorption rate (11.19%). Finally, class 3, which included samples B (10%) and C (15%), had very high shrinkage and fire losses compared to other platelets. These results highlighted the possibility of using up to 5% of the coal fly ash in the production of new fired bricks with good performance.
文摘Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.
文摘Kinetics of the gas-phase reactions of•OH radicals with a series of fluoroesters were studied for the first time at 298±3 K and atmospheric pressure.Relative rate coefficients were determined by in situ FTIR spectroscopy in nitrogen and GC-FID in air to monitor the decay of reactants and references.The following coefficient values(in 10^(−12)cm^(3)/(molecule•sec))were obtained for ethyl fluoroacetate(EFA),ethyl 4,4,4-trifluorobutyrate(ETB),and butyl fluoroacetate(BFA),respectively:k_(1)(EFA+OH)=1.15±0.25 by FTIR and 1.34±0.23 by GC-FID;k_(2)(ETB+OH)=1.61±0.36 by FTIR and 2.02±0.30 by GC-FID;k_(3)(BFA+OH)=2.24±0.37 by FTIR.Reactivity trends were developed and correlated with the number of CH_(3)and F substituents in the fluoroester,and structure-activity relationships(SARs)calculations were performed.In addition,the tropospheric lifetimes of EFA,ETB,and BFA upon degradation by OH radicals were calculated to be 9,6,and 5 days,respectively,indicating that these fluorinated compounds could have a possible regional effect from the emission source.Relatively small photochemical ozone creation potentials of 9,7,and 19 were estimated for EFA,ETB,and BFA,respectively.The GlobalWarming Potentials(GWPs)for EFA,ETB,and BFA were calculated for different time horizons.For a 20-year time horizon,the GWPs were 1.393,0.063,and 0.062,respectively.In the case of a 100-year time horizon,the GWPs were 0.379,0.017,and 0.017,and for a 500-year time horizon,the GWPs were 0.108,0.005,and 0.005 for EFA,ETB,and BFA.
文摘Expansive soils, prone to being influenced by the environmental conditions, undergo expansion when water is introduced and shrinkage upon drying. This persistent volumetric fluctuation can induce differential movements and result in cracking of structures erected upon them. The present research focuses on characterizing the behavior of pavements erected on expansive clays subjected to swelling and shrinkage cycles. Direct shear tests and oedometer tests were conducted in the laboratory on samples of expansive soils undergoing swelling-shrinkage cycles. The experimental data reveal a significant decrease in shear strength, evidenced by a reduction in shear parameters (internal friction angle, cohesion) and a decrease in the modulus of elasticity as the number of cycles increases. A numerical model based on the finite element method was developed to simulate the behavior of a pavement on an expansive clay substrate. The model results indicate an increase in total displacements with the increase in the number of shrinkage-swelling cycles, demonstrating a progressive degradation of the soil’s mechanical behavior. This study contributes to a better understanding of the complex phenomena governing the behavior of expansive soils and serves as a foundation for developing effective management and mitigation strategies for road infrastructures.
文摘Rate coefficients of the gas-phase reactions of Cl atoms with a series of fluorinated diketones(FDKs):CF_(3)C(O)CH_(2)C(O)CH_(3)(TFP),CF_(3)C(O)CH_(2)C(O)CH_(2)CH_(3)(TFH)and CF_(3)C(O)CH_(2)C(O)CH(CH_(3))2(TFMH),have been measured at(298±2)K and under atmospheric pressure.The experiments were performed using the relative-rate method with a GC-FID detection system.From different determinations and references used,the following rate coefficients were obtained(in cm3/(molecule·sec)):k_(4)(TFP+Cl)=(1.75±0.21)×10^(−10),k_(5)(TFH+Cl)=(2.05±0.23)×10^(−10),k_(6)(TFMH+Cl)=(2.71±0.34)×10^(−10).Reactivity trends of FDKs were discussed and Free Energy Relationships analysis was developed.The expression lgkOH=1.68 lgkCl+5.71 was obtained for the reactivity of the studied FDKs together with similar unsaturated VOCs with Cl and OH radicals Additionally,acetic acid(CH_(3)C(O)OH)and trifluoroacetic acid(CF_(3)C(O)OH)were positively identified and quantified as degradation products using in situ FTIR spectroscopy.According to the identified products,atmospheric chemical mechanisms were proposed.The atmospheric implications of the studied reactions were assessed by the estimation of the tropospheric lifetimes of TFP,TFH,and TFMH concerning their reaction with Cl atoms to be 48,41,and 31 hours,respectively.The relatively short residence in the atmosphere of the fluorocarbons studied will have a local/regional impact with restricted transport.Global warming potential(GWP(20 yr))calculated for the studied fluoro diketones were 0.014,0.003 and 0.001 for TFP,TFH and TFMH,respectively with a negligible contribution to the greenhouse effect.
基金financial support from the International Research Chairs Initiativea program funded by the International Development Research Centre,Canada(IDRC)facilitated by the Canadian Research Chairs Program(108469-001 and 109418-006).
文摘Jerada coal mining generates extensive coal mine waste rock(CMWR)piles rich in valuable minerals,posing environmental challenges and economic opportunities.This study examines reprocessing feasibility through 3D geometallurgical characterization.Sampling used down the hole hammer drilling technique(DTH)and drone surveys for topographical precision.Over 620 samples from(T01,T02,T08)underwent comprehensive analyses including particle size distribution,x-ray fluorescence(XRF),total sulfur/carbon analysis(S/C),and inductively coupled plasma mass spectrometry(ICP-MS)for physical-chemical characterization.Mineralogical aspects were explored via optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),electron probe microanalysis(EPMA),and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS).Quantitative mineral evaluation by scanning electron microscope(QEMSCAN)provided mineral insights.Chemical data was used in a 3D block model to quantify residual coal.Results for the three examined CMWR piles(T01,T02,and T08)showed varying D80 from 160 to 300μm,notable carbon content averaged 12.5 wt%(T01),16 wt%(T02),and 8.5 wt%(T08).Sulfur presence exceeded 1 wt%in T08,and potential environmental concerns due to iron sulfides.Anthracite liberation was below 30 wt%.3D modeling estimated a total volume of 7 Mm3,mainly from T08,equaling 11.2 Mt.With its high carbon content and substantial tonnages,re-exploitation or alternative applications could minimize these CMWR piles environmental impact.
文摘The aim of the present study was to evaluate the effects of baobab seed washing and origin on the chemical composition of the oil extracted by pressing. Six (6) oil samples were obtained from seeds of three (3) geographical origins. The identification and quantification of fatty acids and the polyphenolic profile were carried out by GC-MS and HPLC-UV, respectively. Analysis of fatty acid methyl esters allowed the identification and quantification of 18 fatty acids. Oils from unwashed seeds were richer in palmitic (C16:0), stearic (C18:0), oleic (C18:1) and arachidic (C20:0) acids. In addition, HPLC-UV analysis at 279 nm shows that oils from unwashed seeds are richer in tyrosol, hydroxytyrosol and caffeic acid. With regard to the polyphenolic profile, gallic acid and quercetin were not detected in these baobab oils. Principal component analysis of fatty acid and phenolic compound content showed that oils from unwashed seeds would best preserve their chemical and associated potential bioactive characteristics.