Our previous work proved that the thermal stability of Candida rugosa lipase(CRL)immobilized on zwitterionic polymer(poly(carboxybetaine methacrylate))grafted silica nanoparticle(SNP)was much higher than that on poly(...Our previous work proved that the thermal stability of Candida rugosa lipase(CRL)immobilized on zwitterionic polymer(poly(carboxybetaine methacrylate))grafted silica nanoparticle(SNP)was much higher than that on poly(glycidyl methecrylate)(pGMA)grafted SNP,while the latter showed significantly increased activity.Inspired by the research,we have herein proposed to synthesize copolymers of zwitterionic sulfobetaine methacrylate(SBMA)and GMA for CRL immobilization.The copolymers were grafted onto SNP surface at three GMA/SBMA(G/S)molar ratios(G100/S0,G50/S50,G10/S90),followed by the covalent coupling of CRL to the surface copolymers.The immobilized CRLs on the corresponding supports were denoted as p(G100-S0)-CRL,p(G50-S50)-CRL and p(G10-S90)-CRL.The enzyme loading increased with the increase of GMA content in the copolymer,while the activity varied with the grafted copolymer composition.Kinetic study proved the improvement of enzyme-substrate affinity after immobilization.In comparison to p(G100-S0)-CRL,p(G50-S50)-CRL and p(G10-S90)-CRL presented remarkably enhanced thermal stability and pH tolerance,and p(G10-S90)-CRL showed the highest stability.These results suggest that the copolymer design is promising for development as a versatile platform for enzyme immobilization.展开更多
Design of polymeric scaffolds with specific physical and biological properties is a key objective of tissue engineering research. In this work, a novel copolymer poly (e-caprolactone)-b-poly (carboxybetaine methacr...Design of polymeric scaffolds with specific physical and biological properties is a key objective of tissue engineering research. In this work, a novel copolymer poly (e-caprolactone)-b-poly (carboxybetaine methacrylate) (PCL-PCBMA) containing zwitterion and polyester segments, was synthesized through ATRP technique. The chemical structure, composition,and molecular weight of the synthesized copolymer were characterized by ~HNMR and GPC. The polymer was further electrospun into fibrous film which has been characterized by SEM, XPS, water uptake test, and MTT cell culture assay. All these results indicate that this kind of copolymer is a suitable candidate for the application in vascular tissue engineering.展开更多
Tackling fogging and microbial infection problems related to the endoscope lens remain challenges due to visual disturbances and bacterial threats to human health.Herein,highly transparent antifogging and antibacteria...Tackling fogging and microbial infection problems related to the endoscope lens remain challenges due to visual disturbances and bacterial threats to human health.Herein,highly transparent antifogging and antibacterial coatings were developed in a facile way by thermal curing of zwitterionic copolymers poly(n-butyl methacrylate-co-2-aminoethyl methacrylate-co-sulfobetaine methacrylate)s with 1,3,5-triformylbenzene.Characterizations of surface chemical composition and wettability suggested that the copolymer coatings exhibited amphiphilicity with a hydrophobic surface and internal hydrophilicity.The prepared amphiphilic coating exhibited excellent antifogging properties both in vivo and in vitro.The introduction of hydrophobic n-butyl methacrylate and cationic aminoethylmethacrylate could improve the stability and antibacterial capability of the coating.The growth inhibition rates of the coatings against Staphylococcus aureus and Escherichia coli were up to 99%and the copolymer coatings with the zwitterionic groups had low hemolytic rates less than 3%.The amphiphilic copolymer coatings combined antifogging and antibacterial properties may have a promising potential for applications in biomedical devices.展开更多
Developing polymeric adsorbents for uranium harvesting from high-salinity environments remains a daunting challenge due to the‘polyelectrolyte effect’-induced conformational collapse compromising the ligand availabi...Developing polymeric adsorbents for uranium harvesting from high-salinity environments remains a daunting challenge due to the‘polyelectrolyte effect’-induced conformational collapse compromising the ligand availability.A catalyst-free,visible light-controlled radical polymerization has been presented here for the tailor-made synthesis of zwitterionic block copolymers(BCPs)bearing uranophilic ligands.The novel anti-polyelectrolyte uranium harvesters exhibited significant salinity resistance.The facile and robust photosynthetic strategy offers a significantly high monomer conversion(α>95%)that facilitates“one-pot”chain extension to develop the BCPs.Metal catalyst residues,as found in conventional controlled radical polymerizations,are avoided and promoted to synthesize fascinating polymeric materials.We also highlight the first study,by integrating computational modeling with QCM-D analysis,on the interplay between polymer conformational dynamics and chemical adsorption behaviors.With zwitterionic polymer segments as conformational regulators,the BCPs exhibit remarkable‘anti-polyelectrolyte effect’by maintaining stretched conformations in saline solutions.Improved ligand accessibility and promotion of diffusional mass transfer are achieved,enabling a high adsorption capacity toward uranium with remarkably fast kinetics in spiked natural seawater and salt lake brines.展开更多
基金funded by the National Natural Science Foundation of China(21621004)the National Key Research and Development Program of China(2018YFA0900702)。
文摘Our previous work proved that the thermal stability of Candida rugosa lipase(CRL)immobilized on zwitterionic polymer(poly(carboxybetaine methacrylate))grafted silica nanoparticle(SNP)was much higher than that on poly(glycidyl methecrylate)(pGMA)grafted SNP,while the latter showed significantly increased activity.Inspired by the research,we have herein proposed to synthesize copolymers of zwitterionic sulfobetaine methacrylate(SBMA)and GMA for CRL immobilization.The copolymers were grafted onto SNP surface at three GMA/SBMA(G/S)molar ratios(G100/S0,G50/S50,G10/S90),followed by the covalent coupling of CRL to the surface copolymers.The immobilized CRLs on the corresponding supports were denoted as p(G100-S0)-CRL,p(G50-S50)-CRL and p(G10-S90)-CRL.The enzyme loading increased with the increase of GMA content in the copolymer,while the activity varied with the grafted copolymer composition.Kinetic study proved the improvement of enzyme-substrate affinity after immobilization.In comparison to p(G100-S0)-CRL,p(G50-S50)-CRL and p(G10-S90)-CRL presented remarkably enhanced thermal stability and pH tolerance,and p(G10-S90)-CRL showed the highest stability.These results suggest that the copolymer design is promising for development as a versatile platform for enzyme immobilization.
文摘Design of polymeric scaffolds with specific physical and biological properties is a key objective of tissue engineering research. In this work, a novel copolymer poly (e-caprolactone)-b-poly (carboxybetaine methacrylate) (PCL-PCBMA) containing zwitterion and polyester segments, was synthesized through ATRP technique. The chemical structure, composition,and molecular weight of the synthesized copolymer were characterized by ~HNMR and GPC. The polymer was further electrospun into fibrous film which has been characterized by SEM, XPS, water uptake test, and MTT cell culture assay. All these results indicate that this kind of copolymer is a suitable candidate for the application in vascular tissue engineering.
基金supported by the National Natural Science Foundation of China(Grant No.51603143)the Natural Science Foundation of Tianjin(Grant Nos.18JCQNJC03800&17JCZDJC37500)。
文摘Tackling fogging and microbial infection problems related to the endoscope lens remain challenges due to visual disturbances and bacterial threats to human health.Herein,highly transparent antifogging and antibacterial coatings were developed in a facile way by thermal curing of zwitterionic copolymers poly(n-butyl methacrylate-co-2-aminoethyl methacrylate-co-sulfobetaine methacrylate)s with 1,3,5-triformylbenzene.Characterizations of surface chemical composition and wettability suggested that the copolymer coatings exhibited amphiphilicity with a hydrophobic surface and internal hydrophilicity.The prepared amphiphilic coating exhibited excellent antifogging properties both in vivo and in vitro.The introduction of hydrophobic n-butyl methacrylate and cationic aminoethylmethacrylate could improve the stability and antibacterial capability of the coating.The growth inhibition rates of the coatings against Staphylococcus aureus and Escherichia coli were up to 99%and the copolymer coatings with the zwitterionic groups had low hemolytic rates less than 3%.The amphiphilic copolymer coatings combined antifogging and antibacterial properties may have a promising potential for applications in biomedical devices.
基金the National Natural Science Fund for Excellent Young Scholars under Project No.21922604the National Natural Science Foundation of China under Project No.22206104,and Tsinghua University Initiative Scientific Research Program.
文摘Developing polymeric adsorbents for uranium harvesting from high-salinity environments remains a daunting challenge due to the‘polyelectrolyte effect’-induced conformational collapse compromising the ligand availability.A catalyst-free,visible light-controlled radical polymerization has been presented here for the tailor-made synthesis of zwitterionic block copolymers(BCPs)bearing uranophilic ligands.The novel anti-polyelectrolyte uranium harvesters exhibited significant salinity resistance.The facile and robust photosynthetic strategy offers a significantly high monomer conversion(α>95%)that facilitates“one-pot”chain extension to develop the BCPs.Metal catalyst residues,as found in conventional controlled radical polymerizations,are avoided and promoted to synthesize fascinating polymeric materials.We also highlight the first study,by integrating computational modeling with QCM-D analysis,on the interplay between polymer conformational dynamics and chemical adsorption behaviors.With zwitterionic polymer segments as conformational regulators,the BCPs exhibit remarkable‘anti-polyelectrolyte effect’by maintaining stretched conformations in saline solutions.Improved ligand accessibility and promotion of diffusional mass transfer are achieved,enabling a high adsorption capacity toward uranium with remarkably fast kinetics in spiked natural seawater and salt lake brines.