ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced...ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.展开更多
Objective:To examine the protective effects of green-synthesized zinc oxide nanoparticles with Berberis vulgaris L.fruit aqueous extract(BVZnONPs)on cyclophosphamide(CP)-induced nephrotoxicity in Wistar rats.Methods:3...Objective:To examine the protective effects of green-synthesized zinc oxide nanoparticles with Berberis vulgaris L.fruit aqueous extract(BVZnONPs)on cyclophosphamide(CP)-induced nephrotoxicity in Wistar rats.Methods:35 Adult male Wistar rats were divided into 5 groups:normal,BVZnONPs(20 mg/kg),CP(100 mg/kg),and 2 co-treatment groups receiving CP with BVZnONPs(10 and 20 mg/kg).All treatments were administered intraperitoneally for 28 days.Serum levels of antioxidant enzymes(catalase,superoxide dismutase,glutathione peroxidase,nitric oxide)and kidney function parameters(creatinine,total protein,blood urea nitrogen)were measured.The expressions of p53 and Bcl-2 proteins were assessed via immunohistochemical assay while kidney volume and substructures were estimated stereologically.Results:CP induced nephrotoxicity with significant increases(P<0.05)in nitric oxide,creatinine,and blood urea nitrogen levels,and decreases(P<0.05)in catalase,superoxide dismutase,and glutathione peroxidase levels.It also increased p53 protein expression and decreased Bcl-2 protein expression.Treatment with BVZnONPs significantly increased(P<0.05)antioxidant enzyme levels and decreased nitric oxide levels in the 20 mg/kg group compared to CP.Blood urea nitrogen and creatinine levels were significantly reduced in the BVZnONPs-treated groups,with greater effects at 20 mg/kg.However,total protein serum levels were not significant(P>0.05)in the BVZnONPs-treated groups compared to CP.Conclusions:These findings suggest that BVZnONPs can mitigate CP-induced nephrotoxicity,likely due to their antioxidant and anti-apoptotic properties,though longer treatment duration may be necessary for tissue-level improvements.展开更多
Synthesis of zinc oxide nanoparticles(ZnO-NPs)via green method is an outstanding alternative to conventional/regular methods;however,the safety or toxicity of the biosynthesized ZnO-NPs in vivo is not fully explored.T...Synthesis of zinc oxide nanoparticles(ZnO-NPs)via green method is an outstanding alternative to conventional/regular methods;however,the safety or toxicity of the biosynthesized ZnO-NPs in vivo is not fully explored.This study was conducted to evaluate the protective efficiency of cinnamaldehyde-loaded chitosan nanoparticles(Cin@CSNPs)against oxidative damage and genotoxicity of ZnO-NPs in mice.ZnO-NPs were biosynthesized using the extract of fresh leaves of Mentha pulegium L.Cin was extracted from cinnamon essential oil,and was loaded into chitosan nanoparticle(Cin@CSNPs).Both ZnO-NPs,Cin@CSNPs and CSNPs were characterized.The in vitro release of Cin@CSNPs was determined.In the biological study,6 groups of male BALB/c mice were treated by gavage for 3 weeks as follows,control group,the group received ZnO-NPs(25 mg/kg b.w),the groups received Cin@CSNPs at low dose(50 mg/kg b.w)or high dose(100 mg/kg b.w),and the groups received ZnO-NPs plus Cin@CSNPs at the 2 tested doses.Blood and tissue samples were collected for different biochemical,genetical and histological studies.The particle size of ZnO-NPs,CSNPs,and Cin@CSNPs were(20.78±2.60),(170.0±3.7),and(218.23±2.90)nm,andξ-potential were(32.7±4.6),(8.32±0.27)and(4.80±0.21)mV,respectively.ZnO-NPs disturbed the biochemical and oxidative stress indices,AFP,CEA,TNF-α,chromosomal aberrations in somatic and germ cells,and sperm abnormality along with severe pathological changes in the hepatic,renal,and testicular tissues.Cin@CSNPs improved significantly all the parameters tested and the histological picture in a dose-dependent.Therefore,the biosynthesized ZnO-NPs exhibit oxidative damage and genotoxicity,and Cin@CSNPs have potential protective effects against the risks of ZnO-NPs and may be a promising tool to overcome the challenges of using Cin in food and pharmaceuticals applications.展开更多
Here,a preparation of stable,non-toxic,transparent,high performance zinc oxide thin-film semiconductor via thermal processing of composite system of zinc source solution filled zinc oxide nanoparticles layer was repor...Here,a preparation of stable,non-toxic,transparent,high performance zinc oxide thin-film semiconductor via thermal processing of composite system of zinc source solution filled zinc oxide nanoparticles layer was reported.The zinc oxide nanocrystals synthesized through the thermolysis of Zn-oleate complex in organic solvent medium were first deposited on the ATO/ITO/glass substrate and treated by annealing,then the zinc source solution was deposited on the zinc oxide nanoparticle layer to form precursor thin film by spin-coating process.The thin film transistor with well-controlled and densely packed nanocrystals in zinc oxide semiconductor layer was obtained by thermal annealing the system of precursor film coated ATO/ITO/glass substrate.By optimizing the fabrication conditions,the fabricated thin film transistors exhibited superior field-effect property and carrier mobility property,their saturation mobility reached 2.17 cm^(2)·V^(-1)·s^(-1),which was more than twice as high compared to the transistor devices coated only by zinc oxide nanoparticles.Our method of fabricating zinc oxide thin film transistors was simple,high efficiency,and feasible for the batch production with low cost.展开更多
Doping with Ga effectively enhances the crystal quality and optical detection efficiency of zinc oxide(Zn O)single crystals,which has attracted considerable research interest in radiation detection.The application of ...Doping with Ga effectively enhances the crystal quality and optical detection efficiency of zinc oxide(Zn O)single crystals,which has attracted considerable research interest in radiation detection.The application of Zn O:Ga(GZO)in nuclear energy is particularly significant and fascinating at the fundamental level,enabling neutron/gamma discrimination while preserving the response time properties of the single crystal in sub-nanoseconds,maximizing the effective counting rate of the pulsed radiation field.In this study,the single-particle waveform discrimination characteristics of GZO were evaluated for five charged particles(α,β,H^(+),Li^(+),and O^(8+)and two prevalent uncharged particles(neutrons and gamma rays).Based on the timecorrelation single-photon counting(TCSPC)method,the luminescence decay time constants of the charged particles in the GZO crystal were determined as follows:1.21 ns for H^(+),1.50 ns for Li^(+),1.70 ns for O^(8+),1.56 ns forαparticles,and 1.09 ns forβparticles.Visible differences in the excitation time spectra curves were observed.Using the conventional time-domain or frequency-domain waveform discrimination techniques,waveform discrimination of 14.9 Me V neutrons and secondary gamma rays generated by the CPNG-6 device based on GZO scintillation was successfully implemented.The neutron signal constituted 77.93%of the total,indicating that GZO exhibited superior neutron/gamma discrimination sensitivity compared with that of a commercial stilbene crystal.Using the neutron/gamma screening outcomes,we reconstructed the voltage pulse height,charge height,and neutron multiplication time spectra of the pulsed neutron radiation field.The reconstructed neutron multiplication time spectrum exhibited a deviation of less than 3%relative to the result obtained using a commercial stilbene scintillator.This is the first report in the open literature on the neutron/gamma discrimination and reconstruction of Zn O pulsed radiation-field information.展开更多
Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome an...Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.展开更多
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica...Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
This article explores an in-depth analysis of eco-friendly green synthesis methods to manufacture zinc oxide nanoparticles(ZnO NPs).Although chemical and/or physical approaches may initially provide better results;in ...This article explores an in-depth analysis of eco-friendly green synthesis methods to manufacture zinc oxide nanoparticles(ZnO NPs).Although chemical and/or physical approaches may initially provide better results;in the long term;a biological approach using green or natural pathways using plant extracts;enzymes;and mi-crobes may be eco-friendly and more cost-effective.This review addresses various green synthesis techniques and their potential biomedical applications;elucidating their mechanisms.Additionally;the article highlights the pivotal role of ZnO NPs in diabetes;cancer;wound healing;drug delivery;and other biomedical marvels.Overall;it highlights the importance of green-synthesized ZnO NPs in building a future of sustainable biomedical breakthroughs.展开更多
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4...With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.展开更多
The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main p...The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.展开更多
A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%,...A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.展开更多
The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leach...The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.展开更多
Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leachi...Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leaching temperature and pH on Zn leaching recovery and the dissolution of impurities such as Ca,Mg,Cu,Ni,Fe,Pb and Cd were investigated.Results show that Ca,Mg and Fe in ores were hardly dissolved in alkalescent iminodiacetate aqueous solution,while valuable metals such as Cu,Ni,Pb and Cd were partly dissolved into leaching liquor with Zn.The recovery of Zn reaches 76.6% when the ores were leached for 4 h at 70 ℃ by 0.9 mol/L iminodiacetate aqueous solution with pH of 8 and L/S of 5:1.展开更多
Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were ...Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.展开更多
Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption prope...Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption properties of zinc oxide dust and the feasibility of microwave roasting zinc oxide dust to remove fluorine and chlorine. The dielectric constant, dielectric loss, and loss tangent were proportional to the apparent density of zinc oxide dust. The effects of sample mass and microwave power on the temperature increase characteristics under the microwave field were also studied. The results show that the apparent heating rate of the zinc oxide dust increases with the increase in microwave roasting power and decreases with the increase in the sample mass. The temperature of the samples reaches approximately 800 &#176;C after microwave treatment for 8 min, which indicates that the zinc oxide dust has strong microwave-absorption ability.展开更多
A zinc oxide ZnO field emitter-based backlight unit for liquid crystal display with a gated structure is fabricated by screen-printing processes.The measured anode field emission current density reaches 0.62 mA/cm2 wh...A zinc oxide ZnO field emitter-based backlight unit for liquid crystal display with a gated structure is fabricated by screen-printing processes.The measured anode field emission current density reaches 0.62 mA/cm2 when the applied gate voltage is 570 V.Part of the anode current is contributed by the secondary electron emission which is excited from the MgO layer inside the gate apertures on the gate plate. The average emission current density and luminance are 0.47 mA/cm2 and 1 250 cd/m2 respectively with a fluctuation of about 10% during the 1 000 min measurement.By a finite element method calculation the gated structure shows a good electron beam focusing property. The driving performance of the backlight unit is characterized by SPICE simulation tools and measured by the oscilloscope. Stable field emission line-by-line scanning and fast response characteristics of the backlight unit indicate its promising application in the liquid crystal displays.展开更多
In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The chara...In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span>展开更多
Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that t...Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.展开更多
Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by radio frequency (RF) msgnetron sputtering at room temperature, The...Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by radio frequency (RF) msgnetron sputtering at room temperature, The RF power is varied from 75 to 150 W. At first the crystallinity and conductivity of the film are improved and then both of them show deterioration with the increase of the RF power, The lowest resistivity achieved is 2.07 × 10^-3Ωcm at an RF power of 100W with a Hall mobility of 16cm^2V^-1s^-1 and a carrier concentration of 1.95 × 10^20 cm^-3. The films obtained are polycryetalline with a hexagonal structure and a preferred orientation along the c-axis, All the films have a high transmittance of approximately 92% in the visible range. The optical band gap is about 3.33 eV for the films deposited at different RF powers.展开更多
基金supported by the National Natural Science Foundation of China(61774140).
文摘ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.
文摘Objective:To examine the protective effects of green-synthesized zinc oxide nanoparticles with Berberis vulgaris L.fruit aqueous extract(BVZnONPs)on cyclophosphamide(CP)-induced nephrotoxicity in Wistar rats.Methods:35 Adult male Wistar rats were divided into 5 groups:normal,BVZnONPs(20 mg/kg),CP(100 mg/kg),and 2 co-treatment groups receiving CP with BVZnONPs(10 and 20 mg/kg).All treatments were administered intraperitoneally for 28 days.Serum levels of antioxidant enzymes(catalase,superoxide dismutase,glutathione peroxidase,nitric oxide)and kidney function parameters(creatinine,total protein,blood urea nitrogen)were measured.The expressions of p53 and Bcl-2 proteins were assessed via immunohistochemical assay while kidney volume and substructures were estimated stereologically.Results:CP induced nephrotoxicity with significant increases(P<0.05)in nitric oxide,creatinine,and blood urea nitrogen levels,and decreases(P<0.05)in catalase,superoxide dismutase,and glutathione peroxidase levels.It also increased p53 protein expression and decreased Bcl-2 protein expression.Treatment with BVZnONPs significantly increased(P<0.05)antioxidant enzyme levels and decreased nitric oxide levels in the 20 mg/kg group compared to CP.Blood urea nitrogen and creatinine levels were significantly reduced in the BVZnONPs-treated groups,with greater effects at 20 mg/kg.However,total protein serum levels were not significant(P>0.05)in the BVZnONPs-treated groups compared to CP.Conclusions:These findings suggest that BVZnONPs can mitigate CP-induced nephrotoxicity,likely due to their antioxidant and anti-apoptotic properties,though longer treatment duration may be necessary for tissue-level improvements.
基金supported by the National Research Centre,Dokki,Cairo,Egypt project#13050302.
文摘Synthesis of zinc oxide nanoparticles(ZnO-NPs)via green method is an outstanding alternative to conventional/regular methods;however,the safety or toxicity of the biosynthesized ZnO-NPs in vivo is not fully explored.This study was conducted to evaluate the protective efficiency of cinnamaldehyde-loaded chitosan nanoparticles(Cin@CSNPs)against oxidative damage and genotoxicity of ZnO-NPs in mice.ZnO-NPs were biosynthesized using the extract of fresh leaves of Mentha pulegium L.Cin was extracted from cinnamon essential oil,and was loaded into chitosan nanoparticle(Cin@CSNPs).Both ZnO-NPs,Cin@CSNPs and CSNPs were characterized.The in vitro release of Cin@CSNPs was determined.In the biological study,6 groups of male BALB/c mice were treated by gavage for 3 weeks as follows,control group,the group received ZnO-NPs(25 mg/kg b.w),the groups received Cin@CSNPs at low dose(50 mg/kg b.w)or high dose(100 mg/kg b.w),and the groups received ZnO-NPs plus Cin@CSNPs at the 2 tested doses.Blood and tissue samples were collected for different biochemical,genetical and histological studies.The particle size of ZnO-NPs,CSNPs,and Cin@CSNPs were(20.78±2.60),(170.0±3.7),and(218.23±2.90)nm,andξ-potential were(32.7±4.6),(8.32±0.27)and(4.80±0.21)mV,respectively.ZnO-NPs disturbed the biochemical and oxidative stress indices,AFP,CEA,TNF-α,chromosomal aberrations in somatic and germ cells,and sperm abnormality along with severe pathological changes in the hepatic,renal,and testicular tissues.Cin@CSNPs improved significantly all the parameters tested and the histological picture in a dose-dependent.Therefore,the biosynthesized ZnO-NPs exhibit oxidative damage and genotoxicity,and Cin@CSNPs have potential protective effects against the risks of ZnO-NPs and may be a promising tool to overcome the challenges of using Cin in food and pharmaceuticals applications.
文摘Here,a preparation of stable,non-toxic,transparent,high performance zinc oxide thin-film semiconductor via thermal processing of composite system of zinc source solution filled zinc oxide nanoparticles layer was reported.The zinc oxide nanocrystals synthesized through the thermolysis of Zn-oleate complex in organic solvent medium were first deposited on the ATO/ITO/glass substrate and treated by annealing,then the zinc source solution was deposited on the zinc oxide nanoparticle layer to form precursor thin film by spin-coating process.The thin film transistor with well-controlled and densely packed nanocrystals in zinc oxide semiconductor layer was obtained by thermal annealing the system of precursor film coated ATO/ITO/glass substrate.By optimizing the fabrication conditions,the fabricated thin film transistors exhibited superior field-effect property and carrier mobility property,their saturation mobility reached 2.17 cm^(2)·V^(-1)·s^(-1),which was more than twice as high compared to the transistor devices coated only by zinc oxide nanoparticles.Our method of fabricating zinc oxide thin film transistors was simple,high efficiency,and feasible for the batch production with low cost.
基金supported by the National Natural Science Foundation of China(Nos.12205370,62204198,12305205,and 12105230)Young Talents Promotion Program of Shaanxi Provincial Science and Technology Association(No.20220514)。
文摘Doping with Ga effectively enhances the crystal quality and optical detection efficiency of zinc oxide(Zn O)single crystals,which has attracted considerable research interest in radiation detection.The application of Zn O:Ga(GZO)in nuclear energy is particularly significant and fascinating at the fundamental level,enabling neutron/gamma discrimination while preserving the response time properties of the single crystal in sub-nanoseconds,maximizing the effective counting rate of the pulsed radiation field.In this study,the single-particle waveform discrimination characteristics of GZO were evaluated for five charged particles(α,β,H^(+),Li^(+),and O^(8+)and two prevalent uncharged particles(neutrons and gamma rays).Based on the timecorrelation single-photon counting(TCSPC)method,the luminescence decay time constants of the charged particles in the GZO crystal were determined as follows:1.21 ns for H^(+),1.50 ns for Li^(+),1.70 ns for O^(8+),1.56 ns forαparticles,and 1.09 ns forβparticles.Visible differences in the excitation time spectra curves were observed.Using the conventional time-domain or frequency-domain waveform discrimination techniques,waveform discrimination of 14.9 Me V neutrons and secondary gamma rays generated by the CPNG-6 device based on GZO scintillation was successfully implemented.The neutron signal constituted 77.93%of the total,indicating that GZO exhibited superior neutron/gamma discrimination sensitivity compared with that of a commercial stilbene crystal.Using the neutron/gamma screening outcomes,we reconstructed the voltage pulse height,charge height,and neutron multiplication time spectra of the pulsed neutron radiation field.The reconstructed neutron multiplication time spectrum exhibited a deviation of less than 3%relative to the result obtained using a commercial stilbene scintillator.This is the first report in the open literature on the neutron/gamma discrimination and reconstruction of Zn O pulsed radiation-field information.
基金partially funded by the Ministry of AgricultureNature and Food Quality(project number BO-55-001-015)partly by“Vereniging Diervoederonderzoek Nederland”。
文摘Background To improve our understanding of host and intestinal microbiome interaction,this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets.In study 1,piglets received either a high concentration of zinc(Zn)as zinc oxide(Zn O,Zn,2,690 mg/kg)or a low Zn concentration(100 mg/kg)in the diet during the post weaning period(d 14–23).The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated.In study 2,the impact of timing of the dietary zinc intervention was investigated,i.e.,between d 0–14 and/or d 14–23 post weaning,and the consecutive effects on the piglet's intestinal functionality,here referring to microbiota composition and diversity and gene expression profiles.Results Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration Zn O content.A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change,where mainly the commensals inter-changed.In the immediate post weaning period,i.e.,d 0–14,the highest number of differentially expressed genes(DEGs)in intestinal tissue were observed between animals receiving a diet with a low or high concentration Zn O content,i.e.,23 DEGs in jejunal tissue and 11 DEGs in ileal tissue.These genes are involved in biological processes related to immunity and inflammatory responses.For example,genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration Zn O content compared to low Zn O content in both jejunum and ileum tissue.In the second study,a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration Zn O content compared to low Zn O content.Conclusions Supplementing a diet with a pharmaceutical level of Zn as Zn O for clinically healthy post weaning piglets influences various aspects intestinal functionality,in particular in the first two weeks post-weaning.The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue.The effects do not seem related to a direct antimicrobial effect of Zn O.
文摘Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
文摘This article explores an in-depth analysis of eco-friendly green synthesis methods to manufacture zinc oxide nanoparticles(ZnO NPs).Although chemical and/or physical approaches may initially provide better results;in the long term;a biological approach using green or natural pathways using plant extracts;enzymes;and mi-crobes may be eco-friendly and more cost-effective.This review addresses various green synthesis techniques and their potential biomedical applications;elucidating their mechanisms.Additionally;the article highlights the pivotal role of ZnO NPs in diabetes;cancer;wound healing;drug delivery;and other biomedical marvels.Overall;it highlights the importance of green-synthesized ZnO NPs in building a future of sustainable biomedical breakthroughs.
基金supported by the National Basic Research Program of China(2011CB933700)the National Natural Science Foundation of China(21271165)~~
文摘With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.
基金Project (50874121) supported by the National Natural Science Foundation of China
文摘The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.
基金Project(50925417) supported by the China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Projects(2010AA065203,2011AA061001) supported by the National High-tech Research Program of ChinaProject(NCET-10-0840) supported by the Program for New Century Excellent Talents in University,China
文摘A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.
基金Project (50974138) supported by the National Natural Science Foundation of ChinaProject (2010ssxt158) supported by Graduate Student Innovation Foundation of Central South University,China
文摘The selective recovery of lead from the zinc oxide dust using an alkaline Na2EDTA solution was investigated. The effects of temperature, leaching time, Na2EDTA concentration and initial NaOH concentration on the leaching rates of lead and zinc were studied. The following optimized leaching conditions were obtained: liquid-to-solid ratio 5:1 mL/g, stirring speed 650 r/min, Na2EDTA concentration 0.12 mol/L, initial NaOH concentration 0.5 mol/L, leaching temperature 70 ℃, leaching time 120 min. Under the optimized conditions, the average leaching rates of lead, zinc, fluoride and chloride are 89.92%, 0.94%, 62.84% and 90.02%, respectively. The filtrate was used to electrowin lead powders. The average current efficiency of electrowinning is about 93% and lead content is higher than 98% under the conditions of temperature of 60 ℃, current density of 200 A/m2, H3PO4 concentration of 1.5 g/L, and lead ion concentration of above 5 g/L. The consumption of Na2EDTA and the direct current are about respectively 0.218 kg and 0.958 kW·h for per kilogram of lead powder.
基金Project (2007CB613604) supported by the National Basic Research Program of China
文摘Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leaching temperature and pH on Zn leaching recovery and the dissolution of impurities such as Ca,Mg,Cu,Ni,Fe,Pb and Cd were investigated.Results show that Ca,Mg and Fe in ores were hardly dissolved in alkalescent iminodiacetate aqueous solution,while valuable metals such as Cu,Ni,Pb and Cd were partly dissolved into leaching liquor with Zn.The recovery of Zn reaches 76.6% when the ores were leached for 4 h at 70 ℃ by 0.9 mol/L iminodiacetate aqueous solution with pH of 8 and L/S of 5:1.
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2013AA064003)supported by the High-tech Research and Development Program of China+1 种基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(2012HB008)supported by Yunnan Province Young Academic Technology Leader Reserve Talents,China
文摘Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2014CB643404)supported by the National Basic Research Program of China+1 种基金Project(2013AA064003)supported by the Hi-tech Research and Development Program of ChinaProject(2012HB008)supported by the Yunnan Provincial Young Academic Technology Leader Reserve Talents,China
文摘Cavity perturbation method was used to determine the dielectric properties (ε′,ε″, and tanδ) of zinc oxide dust in different apparent densities. The process was conducted to study the microwave-absorption properties of zinc oxide dust and the feasibility of microwave roasting zinc oxide dust to remove fluorine and chlorine. The dielectric constant, dielectric loss, and loss tangent were proportional to the apparent density of zinc oxide dust. The effects of sample mass and microwave power on the temperature increase characteristics under the microwave field were also studied. The results show that the apparent heating rate of the zinc oxide dust increases with the increase in microwave roasting power and decreases with the increase in the sample mass. The temperature of the samples reaches approximately 800 &#176;C after microwave treatment for 8 min, which indicates that the zinc oxide dust has strong microwave-absorption ability.
基金The National Basic Research Program of China(973 Program)(No.2013CB328803)the National Natural Science Foundation of China(No.51002031)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120022)the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A302,2013AA011004)
文摘A zinc oxide ZnO field emitter-based backlight unit for liquid crystal display with a gated structure is fabricated by screen-printing processes.The measured anode field emission current density reaches 0.62 mA/cm2 when the applied gate voltage is 570 V.Part of the anode current is contributed by the secondary electron emission which is excited from the MgO layer inside the gate apertures on the gate plate. The average emission current density and luminance are 0.47 mA/cm2 and 1 250 cd/m2 respectively with a fluctuation of about 10% during the 1 000 min measurement.By a finite element method calculation the gated structure shows a good electron beam focusing property. The driving performance of the backlight unit is characterized by SPICE simulation tools and measured by the oscilloscope. Stable field emission line-by-line scanning and fast response characteristics of the backlight unit indicate its promising application in the liquid crystal displays.
文摘In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span>
文摘Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries.
基金Project supported by the National Key Basic Research and Development Programme of China (Grant No 2001CB610504) and the National Natural Science Foundation of China (Grant Nos 60576039 and 10374060).Acknowledgments We thank Dr Wang Zhuo and Dr Yang ChangHong for their assistance in the experiment.
文摘Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by radio frequency (RF) msgnetron sputtering at room temperature, The RF power is varied from 75 to 150 W. At first the crystallinity and conductivity of the film are improved and then both of them show deterioration with the increase of the RF power, The lowest resistivity achieved is 2.07 × 10^-3Ωcm at an RF power of 100W with a Hall mobility of 16cm^2V^-1s^-1 and a carrier concentration of 1.95 × 10^20 cm^-3. The films obtained are polycryetalline with a hexagonal structure and a preferred orientation along the c-axis, All the films have a high transmittance of approximately 92% in the visible range. The optical band gap is about 3.33 eV for the films deposited at different RF powers.