Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requirin...Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requiring additional energy sources.This paper introduces a novel metallic vibration isolator based on zigzag structures.The proposed isolator features a compact design and can be manufactured using additive manufacturing techniques,allowing for the integration of structural and functional elements.Firstly,the vibration response of the single-degree-of-freedom(SDOF)system is analyzed.To achieve effective vibration reduction,it is crucial for the isolator's stiffness to be sufficiently low.Secondly,to obtain a structure with high compliance,the traversal algorithm and the finite element method(FEM)are applied.The results confirm that the zigzag structure is a reliable high-compliance configuration.Thirdly,the parametric geometric model of the zigzag structure is developed and its stiffness is calculated.Quasi-static compression experiments validate the accuracy of the calculations.Finally,a specific engineering example is considered,where a zigzag vibration isolator is designed and fabricated.Vibration experiments demonstrate that the zigzag isolator effectively reduces both the stiffness and the fundamental frequency of the vibration system,achieving a vibration isolation efficiency exceeding 60%.展开更多
The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for ...The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out,while the concise but accurate theoretical or mechanism model is still not well developed.In this article,a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water.The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame.The model has achieved good trajectory prediction effect in the bubble rising experiment.The average simulation time per unit moving time of bubble is 2.5 s.展开更多
We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanorib...We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.展开更多
文摘水声网络(underwater acoustic network,UAN)具有长传播时延、高误码率、半双工通信等特性,这些特性严重影响了UAN中数据的可靠传输。而在线喷泉码具有在线控制、编解码复杂度低、码率自适应等诸多优势,在线喷泉码适合于保障UAN中数据的可靠传输。针对递归与限制反馈的在线喷泉码(recursive OFC with limited feedback,ROFC-LF)存在不理想覆盖和4元环问题导致略高的开销和频繁的反馈,提出适用于UAN的基于优先级与可Zigzag解码的ROFC-LF(priority-based and zigzag-decodable ROFC-LF,P-ZROFC-LF)。P-ZROFC-LF在建立阶段选取具有最高优先级的原始包进行编码直至所有原始包均参与编码。同时,引入可Zigzag解码编码,将无用编码包进行移位异或转换为有用编码包来提高解码性能。通过随机图理论,分析P-ZROFC-LF所需编码包数与原始包数之间的关系。理论分析与仿真结果表明,与大部分在线喷泉码相比,P-ZROFC-LF显著提高了反馈和开销性能。其中P-ZROFC-LF相比于ROFC-LF的反馈和开销分别减少了18%和0.0176,更适用于UAN。
基金supported by the National Key Research and Development Program of China(Nos.2023YFB4603900,2023YFB4603901)the National Natural Science Foundation of China(No.52275255)。
文摘Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requiring additional energy sources.This paper introduces a novel metallic vibration isolator based on zigzag structures.The proposed isolator features a compact design and can be manufactured using additive manufacturing techniques,allowing for the integration of structural and functional elements.Firstly,the vibration response of the single-degree-of-freedom(SDOF)system is analyzed.To achieve effective vibration reduction,it is crucial for the isolator's stiffness to be sufficiently low.Secondly,to obtain a structure with high compliance,the traversal algorithm and the finite element method(FEM)are applied.The results confirm that the zigzag structure is a reliable high-compliance configuration.Thirdly,the parametric geometric model of the zigzag structure is developed and its stiffness is calculated.Quasi-static compression experiments validate the accuracy of the calculations.Finally,a specific engineering example is considered,where a zigzag vibration isolator is designed and fabricated.Vibration experiments demonstrate that the zigzag isolator effectively reduces both the stiffness and the fundamental frequency of the vibration system,achieving a vibration isolation efficiency exceeding 60%.
基金supported by the National Natural Science Foundation of China(22008169,91834303)the Open Research Fund of State Key Laboratory of Multiphase Complex Systems(MPCS-2021-D-06).
文摘The rising motion of single bubble in still liquid is a natural phenomenon,which has high theoretical research significance and engineering application prospect.Experimental observations and numerical simulations for prediction of the rising trajectory of a single bubble in still liquid are being carried out,while the concise but accurate theoretical or mechanism model is still not well developed.In this article,a theoretical model of a single bubble based on experimental observation of flow around bluff body is proposed to predict the rising trajectory of zigzagging bubbles in still water.The prediction correlation of bubble lateral movement frequency and bubble steer angle are established based on three degrees of freedom frame.The model has achieved good trajectory prediction effect in the bubble rising experiment.The average simulation time per unit moving time of bubble is 2.5 s.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174077 and 12174051)the Science Foundation of GuangDong Province (Grant No.2021A1515012363)GuangDong Basic and Applied Basic Research Foundation (Grant No.2022A1515110011)。
文摘We investigated the electric controllable spin-filtering effect in a zigzag phosphorene nanoribbon(ZPNR) based normal–antiferromagnet–normal junction. Two ferromagnets are closely coupled to the edges of the nanoribbon and form the edge-to-edge antiferromagnetism. Under an in-plane electric field, the two degenerate edge bands of the edge-to-edge antiferromagnet split into four spin-polarized sub-bands and a 100% spin-polarized current can be easily induced with the maximal conductance 2e~2/h. The spin polarization changes with the strength of the electric field and the exchange field,and changes sign at opposite electric fields. The spin-polarized current switches from one edge to the other by reversing the direction of the electric field. The edge current can also be controlled spatially by changing the electric potential of the scattering region. The manipulation of edge current is useful in spin-transfer-torque magnetic random-access memory and provides a practical way to develop controllable spintronic devices.