For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
This paper presents state space methods for decentralized Hoe control, which contain two respects: a parametrization approach and an iterative algorithm. For large scale systems with N subsystems, decentralized Hoe c...This paper presents state space methods for decentralized Hoe control, which contain two respects: a parametrization approach and an iterative algorithm. For large scale systems with N subsystems, decentralized Hoe con trollers can be derived by a parametrization result for centralized Her: controllers and designed by an iterative algorithm with structured constraint to the controllers.展开更多
This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical m...This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.展开更多
In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scal...Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.展开更多
Because of hydraulic-electromagnetic double supporting forms,the supporting capacity and stiffness of magnetic-liquid double suspension bearing(MLDSB)can be improved sharply and then it is more suitable for medium spe...Because of hydraulic-electromagnetic double supporting forms,the supporting capacity and stiffness of magnetic-liquid double suspension bearing(MLDSB)can be improved sharply and then it is more suitable for medium speed,heavy load and frequent-starting occasions.Due to the multiple uncertainty,such as the coupling,the unmodeled dynamics,the parameter perturbation and the external disturbance perturbation,the robust stability and stiffness of control system of MLDSB are hard to meet the design requirements.Firstly,the structural features and the regulation mechanisms of MLDSB are presented and the radial 4-DOF kinetic equations are established.Secondly,the influence factors of the control system's coupling on unbalanced vibration caused by the deviation of the rotor center of mass are revealed,and then the weighting function of suppressing the unbalanced vibration can be obtained.Finally,H∞ controller of MLDSB is designed with H∞ mixed-sensitivity method,and the control performances of H∞ controller is compared with the state feedback controller.The simulation results show that single degree of freedom(DOF)supporting system of MLDSB with H∞ controller has good robust stability,stiffness and the ability to suppress unbalanced external disturbances.This study can provide the theoretical reference for stabilized suspension and control of MLDSB.展开更多
We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of t...We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.展开更多
现代航天器通常携带大量的液体推进剂,在轨运行时推进剂的消耗将导致等效模型参数的改变.为了获取准确的等效模型参数并将其引入GNC(guidance,navigation and control)系统闭环控制,提高航天器的姿态控制精度,文章提出一种基于平方根容...现代航天器通常携带大量的液体推进剂,在轨运行时推进剂的消耗将导致等效模型参数的改变.为了获取准确的等效模型参数并将其引入GNC(guidance,navigation and control)系统闭环控制,提高航天器的姿态控制精度,文章提出一种基于平方根容积卡尔曼滤波(SR-CKF)的等效模型参数在轨辨识策略.首先,为了建立适用于金属膜片贮箱的等效模型,在等效球摆模型的悬挂点施加扭簧-阻尼器以等效金属膜片对推进剂的刚度-阻尼效应,并借助Kane方法建立了航天器刚-液耦合动力学方程.其次,针对状态反馈反步控制器中等效模型参数未知的情形,提出一种基于SR-CKF的等效模型参数在轨辨识策略.该策略可在航天器完成一次大角度姿态机动任务的同时,根据星载角速度计数据在线辨识出等效模型的各项参数以及贮箱内推进剂的剩余量,并预测出推进剂的分布运动状态.最后,数值仿真结果表明了提出的在轨辨识策略的有效性和必要性.文章的工作对于航天器GNC系统中等效模型的校准迭代、研究推进剂在轨晃动行为及预测航天器服役年限具有重要参考价值.展开更多
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
文摘This paper presents state space methods for decentralized Hoe control, which contain two respects: a parametrization approach and an iterative algorithm. For large scale systems with N subsystems, decentralized Hoe con trollers can be derived by a parametrization result for centralized Her: controllers and designed by an iterative algorithm with structured constraint to the controllers.
基金Supported by National Natural Science Foundation of China(10571036)the Key Discipline Development Program of Beijing Municipal Commission (XK100080537)
基金supported by the National Natural Science Foundation of China(6127312660904032)the Natural Science Foundation of Guangdong Province(10251064101000008)
文摘This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
基金the National Natural Science Foundation of China(No.71401016)the Shaanxi Provincial Natural Science Foundation of China(No.2019JM-495)the Fundamental Research Funds for Central Universities of Chang'an University(Nos.300102228110 and 300102228402)。
文摘Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.
基金Supported by the National Nature Science Foundation of China(No.51705445,52075468)General Project of Natural Science Foundation of Hebei Province(E2020203052)+1 种基金Youth Fund Project of Scientific Research Project of Hebei University(QN202013)Open Project Funding of Jiangsu Provincial Key Laboratory of Advanced Manufacture and Process for Marine Mechanical Equipment and Open Project Funding of Fluid Power Transmission Control Laboratory of Yanshan University.
文摘Because of hydraulic-electromagnetic double supporting forms,the supporting capacity and stiffness of magnetic-liquid double suspension bearing(MLDSB)can be improved sharply and then it is more suitable for medium speed,heavy load and frequent-starting occasions.Due to the multiple uncertainty,such as the coupling,the unmodeled dynamics,the parameter perturbation and the external disturbance perturbation,the robust stability and stiffness of control system of MLDSB are hard to meet the design requirements.Firstly,the structural features and the regulation mechanisms of MLDSB are presented and the radial 4-DOF kinetic equations are established.Secondly,the influence factors of the control system's coupling on unbalanced vibration caused by the deviation of the rotor center of mass are revealed,and then the weighting function of suppressing the unbalanced vibration can be obtained.Finally,H∞ controller of MLDSB is designed with H∞ mixed-sensitivity method,and the control performances of H∞ controller is compared with the state feedback controller.The simulation results show that single degree of freedom(DOF)supporting system of MLDSB with H∞ controller has good robust stability,stiffness and the ability to suppress unbalanced external disturbances.This study can provide the theoretical reference for stabilized suspension and control of MLDSB.
文摘We consider a linear-quadratical optimal control problem of a system governed by parabolic equation with distributed in right-hand side control and control and state constraints. We construct a mesh approximation of this problem using different two-level approximations of the state equation, ADI and fractional steps approximations in time among others. Iterative solution methods are investigated for all constructed approximations of the optimal control problem. Their implementation can be carried out in parallel manner.
文摘现代航天器通常携带大量的液体推进剂,在轨运行时推进剂的消耗将导致等效模型参数的改变.为了获取准确的等效模型参数并将其引入GNC(guidance,navigation and control)系统闭环控制,提高航天器的姿态控制精度,文章提出一种基于平方根容积卡尔曼滤波(SR-CKF)的等效模型参数在轨辨识策略.首先,为了建立适用于金属膜片贮箱的等效模型,在等效球摆模型的悬挂点施加扭簧-阻尼器以等效金属膜片对推进剂的刚度-阻尼效应,并借助Kane方法建立了航天器刚-液耦合动力学方程.其次,针对状态反馈反步控制器中等效模型参数未知的情形,提出一种基于SR-CKF的等效模型参数在轨辨识策略.该策略可在航天器完成一次大角度姿态机动任务的同时,根据星载角速度计数据在线辨识出等效模型的各项参数以及贮箱内推进剂的剩余量,并预测出推进剂的分布运动状态.最后,数值仿真结果表明了提出的在轨辨识策略的有效性和必要性.文章的工作对于航天器GNC系统中等效模型的校准迭代、研究推进剂在轨晃动行为及预测航天器服役年限具有重要参考价值.