Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(gen...Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.展开更多
The progression of anodes has markedly promoted the advancement of lithium-ion batteries(LIBs).Typical LIBs using carbon anodes cannot meet the continuously increasing demands for qualified safety and longevity.Spinel...The progression of anodes has markedly promoted the advancement of lithium-ion batteries(LIBs).Typical LIBs using carbon anodes cannot meet the continuously increasing demands for qualified safety and longevity.Spinel lithium titanate(LTO)is a strong contender to replace graphite anodes due to its optimal zero-strain merit and outstanding structural stability.Nevertheless,low reversible capacity and poor rate performance hinder the widespread application of LTO.Amazingly,the promising pseudocapacitive effect enables LTO to surmount the limit of theoretical capacity via boosted surface Li storage,contributing to observably upgraded energy and power densities in a wide temperature range.By leveraging the synergistic effect of multiple modification strategies to create additional active sites,the pseudocapacitive response of LTO can be markedly enhanced.This paper reviews the progress of pseudocapacitive LTO for the first time.We highlight the zero-strain characteristic and pseudocapacitance mechanism of LTO and review the design strategies of pseudocapacitive LTO.Significative issues for further developing pseudocapacitive LTO are proposed.It is worth noting that the pseudocapacitive contribution can greatly improve the low-temperature electrochemical performances of LTO.We anticipate that more efforts will be aroused to study the advanced pseudocapacitive LTO to accelerate the development of next-generation LIBs and energy storage devices.展开更多
Volume change during the insertion/extraction of Li+in electrode materials is an important issue to affect the safety and stability of Li-ion batteries.Here,we prepare a near-zero volume change material of COF derived...Volume change during the insertion/extraction of Li+in electrode materials is an important issue to affect the safety and stability of Li-ion batteries.Here,we prepare a near-zero volume change material of COF derived mesh-liked carbon/TiO_(2)(MC/TiO_(2))composite by using a layered TiO_(2)as a template,and a two-dimensional COF material is inserted into the interlayers by the Schiff base polymerization between melamine and terephthalaldehyde,followed by carbonization at 500℃to convert COF to mesh-liked carbon nanosheets.Due to the introduction of mesh-liked carbon nanosheets,the interlayer conductivity of TiO_(2)is improved,and the nanocavities in mesh-liked carbon nanosheets provide additional chambers for the insertion/extraction of Li-ions without any change of the interlayer distance.The MC/TiO_(2)shows a specific capacity of 472.7 mAh/g at a current density of 0.1 A/g,and good specific capacity retention of 65%remains after 1000 cycles at a current of 1 A/g.展开更多
基金supported by the National Natural Science Foundation of China(51762014,52231007,12327804,T2321003,22088101)in part by the National Key Research Program of China under Grant 2021YFA1200600.
文摘Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(51108455,52106264)Civil Aviation Safety Capacity Building Fund(ADSA2022026)+2 种基金Liaoning Revitalization Talents Program(XLYC2018013)Liaoning Province AppliedFoundation Research Program Project(2023JH2/101300215)Unveiled the List of Local Service Projects from Education Department of Liaoning Province(JYTMS20230227)。
文摘The progression of anodes has markedly promoted the advancement of lithium-ion batteries(LIBs).Typical LIBs using carbon anodes cannot meet the continuously increasing demands for qualified safety and longevity.Spinel lithium titanate(LTO)is a strong contender to replace graphite anodes due to its optimal zero-strain merit and outstanding structural stability.Nevertheless,low reversible capacity and poor rate performance hinder the widespread application of LTO.Amazingly,the promising pseudocapacitive effect enables LTO to surmount the limit of theoretical capacity via boosted surface Li storage,contributing to observably upgraded energy and power densities in a wide temperature range.By leveraging the synergistic effect of multiple modification strategies to create additional active sites,the pseudocapacitive response of LTO can be markedly enhanced.This paper reviews the progress of pseudocapacitive LTO for the first time.We highlight the zero-strain characteristic and pseudocapacitance mechanism of LTO and review the design strategies of pseudocapacitive LTO.Significative issues for further developing pseudocapacitive LTO are proposed.It is worth noting that the pseudocapacitive contribution can greatly improve the low-temperature electrochemical performances of LTO.We anticipate that more efforts will be aroused to study the advanced pseudocapacitive LTO to accelerate the development of next-generation LIBs and energy storage devices.
基金the National Natural Science Foundation of China(No.21905282)the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(No.20190016)。
文摘Volume change during the insertion/extraction of Li+in electrode materials is an important issue to affect the safety and stability of Li-ion batteries.Here,we prepare a near-zero volume change material of COF derived mesh-liked carbon/TiO_(2)(MC/TiO_(2))composite by using a layered TiO_(2)as a template,and a two-dimensional COF material is inserted into the interlayers by the Schiff base polymerization between melamine and terephthalaldehyde,followed by carbonization at 500℃to convert COF to mesh-liked carbon nanosheets.Due to the introduction of mesh-liked carbon nanosheets,the interlayer conductivity of TiO_(2)is improved,and the nanocavities in mesh-liked carbon nanosheets provide additional chambers for the insertion/extraction of Li-ions without any change of the interlayer distance.The MC/TiO_(2)shows a specific capacity of 472.7 mAh/g at a current density of 0.1 A/g,and good specific capacity retention of 65%remains after 1000 cycles at a current of 1 A/g.