The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fi...The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fitting methods often overestimate the charge transfer overpotential,leading to substantial errors in reaction rate constant measurements.These inaccuracies hinder the accurate prediction of voltage profiles and overall cell performance.In this study,we propose the characteristic time-decomposed overpotential(CTDO)method,which employs a single-layer particle electrode(SLPE)structure to eliminate interference overpotentials.By leveraging the distribution of relaxation times(DRT),our method effectively isolates the characteristic time of the charge transfer process,enabling a more precise determination of the reaction rate constant.Simulation results indicate that our approach reduces measurement errors to below 2%,closely aligning with theoretical values.Furthermore,experimental validation demonstrates an 80% reduction in error compared to the conventional galvanostatic intermittent titration technique(GITT)method.Overall,this study provides a novel voltage-based approach for determining the reaction rate constant,enhancing the applicability of theoretical analysis in electrode structural design and facilitating rapid battery optimization.展开更多
In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the ...In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the new system under both cooling and heating modes. The experimental results show that the double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Moreover, with the same duration of the thermal energy storage process, the increase of water temperature supplied to the system can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under different conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.展开更多
By reduction to one dimensional, periodic as well as rotating pulse heat sources, investigation on heat transfer characteristics with rotating body is carried out. Similar to the fluid flow, a new set of dimensionless...By reduction to one dimensional, periodic as well as rotating pulse heat sources, investigation on heat transfer characteristics with rotating body is carried out. Similar to the fluid flow, a new set of dimensionless numbers, namely quasi-Peclet numbers Pe 1, Pe 2 and Biot number Bi composed of angular velocity ω , thermophysical parameter, and geometry size are proposed, and applied to the dimensionless equations. Simulation result shows that it plays a decisive role in the process of the heat transfer. However, more important is that the numerical simulation depicts the difference between microcosmic and macroscopic structures of the temperature distribution, and reveals the influence of the relative relation of the dimensionless criterion numbers upon heat transfer characteristics.展开更多
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con...The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.展开更多
Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experimen...Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experiment was conducted aiming at investigating the forced heat transfer characteristics of aqueous copper (Cu) nanofluid at varying concentration of Cu nano-particles in different flow regimes (300<Re≤16 000). The forced convective heat transfer enhancement is available both in the laminar and turbulent flow with increasing the concentration. Especially, the enhancement rate increases dramatically in laminar flow regime, for instance, the heat transfer coefficient of Cu/water nanofluid increases by two times at around Re=2 000 compared with that of base fluid water, and averagely increases by 62% at 1% volume fraction. However, the heat transfer coefficient of Cu/water decreases sharply in the transition flow regime. Furthermore, it has the trend that the heat transfer coefficient displays worse with increasing the concentration.展开更多
Heat transfer characteristics in a narrow confined channel with discrete impingement cooling were investigated using thermal infrared camera. Detailed heat transfer distributions and comparisons on three surfaces with...Heat transfer characteristics in a narrow confined channel with discrete impingement cooling were investigated using thermal infrared camera. Detailed heat transfer distributions and comparisons on three surfaces with three impact diameters were experimentally studied in the range of Reynolds number of 3000 to 30000. The experimental results indicated that the strong impingement jet leaded to a high strength heat transfer zone in the ΔX=±2.5D;range of the impact center,which was 1.3–2.5 times of the average heat transfer value of the impingement wall. With the same coolant mass flow rate, small diameter case had lower heat transfer coefficient on both inner wall and outside wall, while the impingement wall was insensitive to the impact diameter. The surface averaged Nusselt number of inner wall was only 43%–57% of impingement wall, while the outside wall can reach up to 80%–90%. The larger the diameter, the higher heat transfer enhancement and the smaller the channel flow resistance was observed in term of Reynolds number. The surface averaged Nusselt numbers were developed as the function of Reynolds number and the impingement height-to-diameter for further engineering applications.展开更多
As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimat...As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimation method (NEM), thermal measurements near both bottom and lateral metal-mold interfaces throughout A356 gravity casting process were carried out and applied to solving the inverse heat conduction problem (IHCP). Finite element method (FEM) is employed for modeling transient thermal fields implementing a developed NEM interface program to quantify transient IHTCs. It is found that IHTCs at the lateral interface become stable after the volumetric shrinkage of casting while those of the bottom interface reach the steady period once a surface layer has solidified. The stable value of bottom IHTCs is 750 W/(m^2·℃), which is approximately 3 times that at the lateral interface. Further analysis of the interplay between spatial IHTCs and observed surface morphology reveals that spatial heat transfer across casting-mold interfaces is the direct result of different interface evolution during solidification process.展开更多
The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative stu...The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.展开更多
The thermal protection of rocket engines is a crucial aspect of rocket engine design.In this paper,the gas film/regenerative composite cooling of the liquid oxygen/liquid methane(LOX/LCH4)rocket engine thrust chamber ...The thermal protection of rocket engines is a crucial aspect of rocket engine design.In this paper,the gas film/regenerative composite cooling of the liquid oxygen/liquid methane(LOX/LCH4)rocket engine thrust chamber was investigated.A gas film/regenerative composite cooling model was developed based on the Grisson gas film cooling efficiency formula and the one-dimensional regenerative cooling model.The accuracy of the model was validated through experiments conducted on a 6 kg/s level gas film/regenerative composite cooling thrust chamber.Additionally,key parameters related to heat transfer performance were calculated.The results demonstrate that the model is sufficiently accurate to be used as a preliminary design tool.The temperature rise error of the coolant,when compared with the experimental results,was found to be less than 10%.Although the pressure drop error is relatively large,the calculated results still provide valuable guidance for heat transfer analysis.In addition,the performance of composite cooling is observed to be superior to regenerative cooling.Increasing the gas film flow rate results in higher cooling efficiency and a lower gas-side wall temperature.Furthermore,the position at which the gas film is introduced greatly impacts the cooling performance.The optimal introduction position for the gas film is determined when the film is introduced from a single row of holes.This optimal introduction position results in a more uniform wall temperature distribution and reduces the peak temperature.Lastly,it is observed that a double row of holes,when compared to a single row of holes,enhances the cooling effect in the superposition area of the gas film and further lowers the gas-side wall temperature.These results provide a basis for the design of gas film/regenerative composite cooling systems.展开更多
In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters i...In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.展开更多
In order to study hydrochemical characteristics and ion transfer of annual rainfall of Betula platyphylla secondary forest,water samples of rainfall,throughfall,stemflow,litter infiltration water and slope runoff of B...In order to study hydrochemical characteristics and ion transfer of annual rainfall of Betula platyphylla secondary forest,water samples of rainfall,throughfall,stemflow,litter infiltration water and slope runoff of Betula platyphylla secondary forest in the early growth stage,fastgrowing stage and growth decline stage in Shanjiankou watershed of Xiaowutai Mountain and nine indexes of pH,Ca^2+,Mg^2+,K+,Na+,Zn^2+,Mn^2+,Fe^2+ and Cu^2+ were determined.The results showed that:①The annual rainfall was weakly alkaline,and the ion concentration in different stages was obviously different.According to the ratio of the maximum concentration to the minimum concentration of the same ion,the rank was Mg^2+ > Mn^2+ >Na+ > K+ > Ca^2+ > Cu^2+ > Fe^2+ > Zn^2+.②Compared with the rainfall in the same period,in the early growth stage,Mg^2+,Mn^2+,Na+,K+,Ca^2+,Fe^2+ and Zn^2+ showed leaching loss in each distribution process.In the fastgrowing stage,Ca^2+,Mn^2+ and Fe^2+ showed leaching loss in each distribution process;Mg^2+ showed absorption,Na+ showed leaching loss in slope runoff and showed absorption in other process.K+ showed leaching loss in stemflow and showed absorption in other process.Zn^2+ showed absorption in stemflow and slope runoff and showed a little leaching loss in other process.In the late growth stage,Ca^2+,Mg^2+,Zn^2+,Mn^2+ and Fe^2+ showed leaching loss in each distribution process;Na+ and Cu^2+ showed absorption;K+ showed absorption in stemflow and showed leaching loss in other process.Most of the rainfall and metal ions in Betula platyphylla secondary forest were intercepted by litter layer.展开更多
Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part ...Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions' observation.展开更多
The characteristics of the mass transfer between powder particles and liquid steel in the Ruhrstahl Heraeus process injection (RH-IJ) refining were simulatively investigated by the use of a 1/4 scale water model of ...The characteristics of the mass transfer between powder particles and liquid steel in the Ruhrstahl Heraeus process injection (RH-IJ) refining were simulatively investigated by the use of a 1/4 scale water model of a 150 t Ruhrstahl Heraeus(RH) degasser. The influences of the lifting gas flow rate, the up-snorkel and down-snorkel inner diameters and the size of powder particles on the characteristics of the mass transfer were examined. The results show that under the condition that the inner diameters of both the up-snorkel and the down-snorkel are the same, the mass transfer coefficient in the liquid,k increases with the increase of the inner diameter of the up-snorkel,the particle size and the lifting gas flow rate (Q1). However, the increase of Q~ should not result in a saturated circulation rate. Under the current working condition,k ranges from 3. 392 × 10 -5 m/s to 2. 661 × 10-4 m/s. On the other hand,with a given lifting gas flow rate and up-snorkel inner diameters ,the mass transfer weakens with the increase of the down-snorkel inner diameter. An inherently nonlinear relationship between the circulation rate (Q~) of molten steel in the RH degasser and k,which increases with the increase of Q1,was found. Under the condition of other parameters being the same,k increases with the increase of the powder particle size. In order to enhance the mass transfer,it is better not to use extremely fine powder.展开更多
This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency c...This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.展开更多
An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, speci...An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, species of bio-materials, thickness and initialmoisture content of bio-materials on heat transfer were studied in details. The experimental resultsindicate that the penetration and absorption of laser in bio-materials are considerable, the heattransfer inside the bio-materials should include the effects of volumetric absorption, pulseduration, power density, bio-materials thickness, and material species have a significant influenceon the temperature variation.展开更多
A polyethylene tube can be used as a heat exchanger for a low-running-cost?temperature control system. In this system, the flow of temperature-controlled?water in the tube is used as the heat source, and the tube is p...A polyethylene tube can be used as a heat exchanger for a low-running-cost?temperature control system. In this system, the flow of temperature-controlled?water in the tube is used as the heat source, and the tube is placed on the ceiling of a temperature-controlled space using a metal net. Owing to this structure, the tube is deformed by its weight. This deformation has a significant influence on heat transfer and flow characteristics. Therefore, an air injection method, in which air and water are injected simultaneously into the tube, is developed for preventing the deformation of the tube. In this study, bedding metal rods were used instead of a metal net. The influence of the pitch length of the metal rods (5 - 15 cm) and the width of the polyethylene tube 15, 20, 25, 30, and 35 cm was examined experimentally. The length of the polyethylene tube was 178 cm. The air flow rate was 9.5 × 10-5 m3/s. The water flow rates were 60, 80, 100, 120, and 140 mL/min. Results show that the thermal response improved because of air injection. In particular, the temperature at steady state increased, and steady state was attained approximately 1.2 - 3 times faster with air injection than without air injection. The optimum pitch length of the metal rods and the range of the optimum width of the polyethylene tube were 8 cm and 20 - 25 cm, respectively, with and without air injection.展开更多
The rare earth luminescence materials LaOBrfTb3+(Dy3+) were synthesized at high temperature,and the structure and luminescence characteristics were studied. The co-doping Dy3+ may make the energy of 5D3 of Tb3+ transf...The rare earth luminescence materials LaOBrfTb3+(Dy3+) were synthesized at high temperature,and the structure and luminescence characteristics were studied. The co-doping Dy3+ may make the energy of 5D3 of Tb3+ transfer to 5D4 level, which makes the emission of 5D4-7FJ (J=0,1... 6), specially of 5D4-7F5, enhance obviously, and the total brightness is increased by about 40% in comparison with the samples without Dy3+ cations, as a result of the energy transfer of dipole-dipole interaction.展开更多
To find the difference in dynamic characteristics between conventional monohull ship and wave penetrating catamaran (WPC), a WPC was taken as an object; its dynamic characteristics were computed by transfer matrix met...To find the difference in dynamic characteristics between conventional monohull ship and wave penetrating catamaran (WPC), a WPC was taken as an object; its dynamic characteristics were computed by transfer matrix method and finite element method respectively. According to the comparison of the nature frequency results and mode shape results, the fact that FEM method is more suitable to dynamic characteristics analysis of a WPC was pointed out, special features on dynamic characteristics of WPC were given, and some beneficial suggestions are proposed to optimize the strength of a WPC in design period.展开更多
The principle of the two carriers contributing to carry the pixel signal charges is firstly presented,and then the bipolar junction photogate transistor(BJPT)with high performance is proposed for the CMOS image sensor...The principle of the two carriers contributing to carry the pixel signal charges is firstly presented,and then the bipolar junction photogate transistor(BJPT)with high performance is proposed for the CMOS image sensor.The numerical analytical model of the photo-charge transfer for the bipolar junction photogate is established in detail. Some numerical simulations are obtained under 0.6 μm CMOS process,which show that its readout rate increases exponentially with the increase of the photo-charge at applied voltage.展开更多
A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount o...A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed.展开更多
基金supported by the National Key R&D Program of China 2022YFB2404300the National Natural Science Foundation of China U22B2069the China Postdoctoral Science Foundation 2024M761006。
文摘The reaction rate constant is a crucial kinetic parameter that governs the charge and discharge performance of batteries,particularly in high-rate and thick-electrode applications.However,conventional estimation or fitting methods often overestimate the charge transfer overpotential,leading to substantial errors in reaction rate constant measurements.These inaccuracies hinder the accurate prediction of voltage profiles and overall cell performance.In this study,we propose the characteristic time-decomposed overpotential(CTDO)method,which employs a single-layer particle electrode(SLPE)structure to eliminate interference overpotentials.By leveraging the distribution of relaxation times(DRT),our method effectively isolates the characteristic time of the charge transfer process,enabling a more precise determination of the reaction rate constant.Simulation results indicate that our approach reduces measurement errors to below 2%,closely aligning with theoretical values.Furthermore,experimental validation demonstrates an 80% reduction in error compared to the conventional galvanostatic intermittent titration technique(GITT)method.Overall,this study provides a novel voltage-based approach for determining the reaction rate constant,enhancing the applicability of theoretical analysis in electrode structural design and facilitating rapid battery optimization.
基金The National Science and Technology Pillar Program during the 12th Five-Year Plan Period(No.2011BAJ03B14)the National Natural Science Foundation of China(No.51376044)
文摘In order to improve the heat transfer characteristics of the traditional phase change material(PCM) floor, a new double-layer radiant floor system with PCM is proposed, which can store thermal or cold energy in the off-peak period and use them in the peak period. An experimental setup was developed to study the heat transfer characteristics of the new system under both cooling and heating modes. The experimental results show that the double-layer radiant floor system with PCM can meet both the cold and thermal requirements of users. Moreover, with the same duration of the thermal energy storage process, the increase of water temperature supplied to the system can improve the heat transfer characteristics of the system but lead to the discomfort of users. On the other hand, if the air temperature at the end of the thermal energy storage process is the same under different conditions, the increase of supplied water temperature will decrease the thermal energy storage time and ensure the comfort of users.
文摘By reduction to one dimensional, periodic as well as rotating pulse heat sources, investigation on heat transfer characteristics with rotating body is carried out. Similar to the fluid flow, a new set of dimensionless numbers, namely quasi-Peclet numbers Pe 1, Pe 2 and Biot number Bi composed of angular velocity ω , thermophysical parameter, and geometry size are proposed, and applied to the dimensionless equations. Simulation result shows that it plays a decisive role in the process of the heat transfer. However, more important is that the numerical simulation depicts the difference between microcosmic and macroscopic structures of the temperature distribution, and reveals the influence of the relative relation of the dimensionless criterion numbers upon heat transfer characteristics.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(Grants 20113219110025,20133219110037)the National Natural Science Foundation of China(Grants 11102089,61304137)the Program for New Century Excellent Talents in University(NCET-10-0075)
文摘The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (No.2012-0004544)
文摘Nano fluid is considered to be a class of high efficient heat transfer fluid created by dispersing some special solid nanoparticles (normally less than 100 nm) in traditional heat transfer fluid. The present experiment was conducted aiming at investigating the forced heat transfer characteristics of aqueous copper (Cu) nanofluid at varying concentration of Cu nano-particles in different flow regimes (300<Re≤16 000). The forced convective heat transfer enhancement is available both in the laminar and turbulent flow with increasing the concentration. Especially, the enhancement rate increases dramatically in laminar flow regime, for instance, the heat transfer coefficient of Cu/water nanofluid increases by two times at around Re=2 000 compared with that of base fluid water, and averagely increases by 62% at 1% volume fraction. However, the heat transfer coefficient of Cu/water decreases sharply in the transition flow regime. Furthermore, it has the trend that the heat transfer coefficient displays worse with increasing the concentration.
基金supported by Hunan Provincial Natural Science Foundation of China(No.2019JJ50701)。
文摘Heat transfer characteristics in a narrow confined channel with discrete impingement cooling were investigated using thermal infrared camera. Detailed heat transfer distributions and comparisons on three surfaces with three impact diameters were experimentally studied in the range of Reynolds number of 3000 to 30000. The experimental results indicated that the strong impingement jet leaded to a high strength heat transfer zone in the ΔX=±2.5D;range of the impact center,which was 1.3–2.5 times of the average heat transfer value of the impingement wall. With the same coolant mass flow rate, small diameter case had lower heat transfer coefficient on both inner wall and outside wall, while the impingement wall was insensitive to the impact diameter. The surface averaged Nusselt number of inner wall was only 43%–57% of impingement wall, while the outside wall can reach up to 80%–90%. The larger the diameter, the higher heat transfer enhancement and the smaller the channel flow resistance was observed in term of Reynolds number. The surface averaged Nusselt numbers were developed as the function of Reynolds number and the impingement height-to-diameter for further engineering applications.
基金Project(TC160A310-10-01)supported by the National Industry Base Enhanced Program,ChinaProjects(2015B090926002,2013A090100002)supported by Science and Technology of Guangdong Province,ChinaProject(2016AG100932)supported by Key Technology Program of Foshan,China
文摘As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimation method (NEM), thermal measurements near both bottom and lateral metal-mold interfaces throughout A356 gravity casting process were carried out and applied to solving the inverse heat conduction problem (IHCP). Finite element method (FEM) is employed for modeling transient thermal fields implementing a developed NEM interface program to quantify transient IHTCs. It is found that IHTCs at the lateral interface become stable after the volumetric shrinkage of casting while those of the bottom interface reach the steady period once a surface layer has solidified. The stable value of bottom IHTCs is 750 W/(m^2·℃), which is approximately 3 times that at the lateral interface. Further analysis of the interplay between spatial IHTCs and observed surface morphology reveals that spatial heat transfer across casting-mold interfaces is the direct result of different interface evolution during solidification process.
文摘The variation in arc characteristics and behavior of metal transfer with the change in pulse parameters has been studied by high speed video camera during pulse current flux-cored arc weld deposition.A comparative study of similar nature has also been carried out during flux-cored arc weld deposition in globular and spray transfer modes.The effect of pulse parameters has been studied by considering their mean current and arc voltage.The arc characteristics studied by its root diameter,projected diameter and length,and the behavior of metal transfer noted by the metal transfer model and the droplet diameter have been found to vary significantly with the pulse parameters.The observation may help in understanding the arc characteristics with respect to the variation in pulse parameters which may be beneficial in using pulse current FCAW to produce desired weld quality.
基金supported by the National Science Fund Project(No.2019-JCJQ-ZQ-019)the Innovative Research Group Project of National Natural Science Foundation of China(No.T2221002).
文摘The thermal protection of rocket engines is a crucial aspect of rocket engine design.In this paper,the gas film/regenerative composite cooling of the liquid oxygen/liquid methane(LOX/LCH4)rocket engine thrust chamber was investigated.A gas film/regenerative composite cooling model was developed based on the Grisson gas film cooling efficiency formula and the one-dimensional regenerative cooling model.The accuracy of the model was validated through experiments conducted on a 6 kg/s level gas film/regenerative composite cooling thrust chamber.Additionally,key parameters related to heat transfer performance were calculated.The results demonstrate that the model is sufficiently accurate to be used as a preliminary design tool.The temperature rise error of the coolant,when compared with the experimental results,was found to be less than 10%.Although the pressure drop error is relatively large,the calculated results still provide valuable guidance for heat transfer analysis.In addition,the performance of composite cooling is observed to be superior to regenerative cooling.Increasing the gas film flow rate results in higher cooling efficiency and a lower gas-side wall temperature.Furthermore,the position at which the gas film is introduced greatly impacts the cooling performance.The optimal introduction position for the gas film is determined when the film is introduced from a single row of holes.This optimal introduction position results in a more uniform wall temperature distribution and reduces the peak temperature.Lastly,it is observed that a double row of holes,when compared to a single row of holes,enhances the cooling effect in the superposition area of the gas film and further lowers the gas-side wall temperature.These results provide a basis for the design of gas film/regenerative composite cooling systems.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)Funding of Jiangsu Innovation Program for Graduate Education(CXLX12.0170)the Fundamental Research Funds for the Central Universities of China
文摘In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition,the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial.In this paper,subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic(CFD).The boiling heat transfer was simulated based on the Euler homogeneous phase model,and local differences of liquid physical properties were considered under one-sided high heating conditions.The calculated wall temperature was in good agreement with experimental results,with the maximum error of 5%only.On this basis,the void fraction distribution,flow field and heat transfer coefficient(HTC)distribution were obtained.The effects of heat flux,inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated.These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.
基金Sponsored by Subsidy Project of Operation of Forestry Science and Technology Innovation Platform(2017-LYPTDW-004).
文摘In order to study hydrochemical characteristics and ion transfer of annual rainfall of Betula platyphylla secondary forest,water samples of rainfall,throughfall,stemflow,litter infiltration water and slope runoff of Betula platyphylla secondary forest in the early growth stage,fastgrowing stage and growth decline stage in Shanjiankou watershed of Xiaowutai Mountain and nine indexes of pH,Ca^2+,Mg^2+,K+,Na+,Zn^2+,Mn^2+,Fe^2+ and Cu^2+ were determined.The results showed that:①The annual rainfall was weakly alkaline,and the ion concentration in different stages was obviously different.According to the ratio of the maximum concentration to the minimum concentration of the same ion,the rank was Mg^2+ > Mn^2+ >Na+ > K+ > Ca^2+ > Cu^2+ > Fe^2+ > Zn^2+.②Compared with the rainfall in the same period,in the early growth stage,Mg^2+,Mn^2+,Na+,K+,Ca^2+,Fe^2+ and Zn^2+ showed leaching loss in each distribution process.In the fastgrowing stage,Ca^2+,Mn^2+ and Fe^2+ showed leaching loss in each distribution process;Mg^2+ showed absorption,Na+ showed leaching loss in slope runoff and showed absorption in other process.K+ showed leaching loss in stemflow and showed absorption in other process.Zn^2+ showed absorption in stemflow and slope runoff and showed a little leaching loss in other process.In the late growth stage,Ca^2+,Mg^2+,Zn^2+,Mn^2+ and Fe^2+ showed leaching loss in each distribution process;Na+ and Cu^2+ showed absorption;K+ showed absorption in stemflow and showed leaching loss in other process.Most of the rainfall and metal ions in Betula platyphylla secondary forest were intercepted by litter layer.
文摘Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer functions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions' observation.
文摘The characteristics of the mass transfer between powder particles and liquid steel in the Ruhrstahl Heraeus process injection (RH-IJ) refining were simulatively investigated by the use of a 1/4 scale water model of a 150 t Ruhrstahl Heraeus(RH) degasser. The influences of the lifting gas flow rate, the up-snorkel and down-snorkel inner diameters and the size of powder particles on the characteristics of the mass transfer were examined. The results show that under the condition that the inner diameters of both the up-snorkel and the down-snorkel are the same, the mass transfer coefficient in the liquid,k increases with the increase of the inner diameter of the up-snorkel,the particle size and the lifting gas flow rate (Q1). However, the increase of Q~ should not result in a saturated circulation rate. Under the current working condition,k ranges from 3. 392 × 10 -5 m/s to 2. 661 × 10-4 m/s. On the other hand,with a given lifting gas flow rate and up-snorkel inner diameters ,the mass transfer weakens with the increase of the down-snorkel inner diameter. An inherently nonlinear relationship between the circulation rate (Q~) of molten steel in the RH degasser and k,which increases with the increase of Q1,was found. Under the condition of other parameters being the same,k increases with the increase of the powder particle size. In order to enhance the mass transfer,it is better not to use extremely fine powder.
文摘This paper systematically analyzes the transfer characteristics of the Rogowski-coil Current Transformer and its effect on protective relaying through theoretical analysis, experiments and simulations. The frequency characteristics and transient characteristics of Rogowski transducer and Rogowski-coil Current Transformer are deeply analyzed based on the physical structure of the transformer.?It is revealed that broad bandwidth of the transformer can improve the performance of protective relaying, and the bandwidth is determined mainly by the parameters of the Rogowski transducer and signal processing circuits. It is also discovered that the measurement errors of transient current mainly depend on the abilities for the current transformer to reproduce an accurate replica of the decaying dc components, which is mainly decided by the decay time constant of the aperiodic component of transient current and the parameters of the integral unit. Finally, some measures are proposed for the performance improvement of Rogowski-coil Current Transformer to meet the requirements of protective relaying system in terms of structural design and testing standards.
基金This research was financially supported by the Chinese National Key Foundation Research Subject (No.G2000026305), National Natural Science Foundation of China (No.50276060), and the director foundation of Institute of Engineering Thermophysics, Chinese A
文摘An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, species of bio-materials, thickness and initialmoisture content of bio-materials on heat transfer were studied in details. The experimental resultsindicate that the penetration and absorption of laser in bio-materials are considerable, the heattransfer inside the bio-materials should include the effects of volumetric absorption, pulseduration, power density, bio-materials thickness, and material species have a significant influenceon the temperature variation.
文摘A polyethylene tube can be used as a heat exchanger for a low-running-cost?temperature control system. In this system, the flow of temperature-controlled?water in the tube is used as the heat source, and the tube is placed on the ceiling of a temperature-controlled space using a metal net. Owing to this structure, the tube is deformed by its weight. This deformation has a significant influence on heat transfer and flow characteristics. Therefore, an air injection method, in which air and water are injected simultaneously into the tube, is developed for preventing the deformation of the tube. In this study, bedding metal rods were used instead of a metal net. The influence of the pitch length of the metal rods (5 - 15 cm) and the width of the polyethylene tube 15, 20, 25, 30, and 35 cm was examined experimentally. The length of the polyethylene tube was 178 cm. The air flow rate was 9.5 × 10-5 m3/s. The water flow rates were 60, 80, 100, 120, and 140 mL/min. Results show that the thermal response improved because of air injection. In particular, the temperature at steady state increased, and steady state was attained approximately 1.2 - 3 times faster with air injection than without air injection. The optimum pitch length of the metal rods and the range of the optimum width of the polyethylene tube were 8 cm and 20 - 25 cm, respectively, with and without air injection.
文摘The rare earth luminescence materials LaOBrfTb3+(Dy3+) were synthesized at high temperature,and the structure and luminescence characteristics were studied. The co-doping Dy3+ may make the energy of 5D3 of Tb3+ transfer to 5D4 level, which makes the emission of 5D4-7FJ (J=0,1... 6), specially of 5D4-7F5, enhance obviously, and the total brightness is increased by about 40% in comparison with the samples without Dy3+ cations, as a result of the energy transfer of dipole-dipole interaction.
文摘To find the difference in dynamic characteristics between conventional monohull ship and wave penetrating catamaran (WPC), a WPC was taken as an object; its dynamic characteristics were computed by transfer matrix method and finite element method respectively. According to the comparison of the nature frequency results and mode shape results, the fact that FEM method is more suitable to dynamic characteristics analysis of a WPC was pointed out, special features on dynamic characteristics of WPC were given, and some beneficial suggestions are proposed to optimize the strength of a WPC in design period.
文摘The principle of the two carriers contributing to carry the pixel signal charges is firstly presented,and then the bipolar junction photogate transistor(BJPT)with high performance is proposed for the CMOS image sensor.The numerical analytical model of the photo-charge transfer for the bipolar junction photogate is established in detail. Some numerical simulations are obtained under 0.6 μm CMOS process,which show that its readout rate increases exponentially with the increase of the photo-charge at applied voltage.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-18B03)by the Municipal Science and Technology Commission of Tianjin,China(No.2009ZCKFGX01900).
文摘A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed.