With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power ...With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.展开更多
Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment an...Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment and production.In this study,a 3-D finite element (FE) method based on experimental verification was applied to calculate the magnetic flux density (Bz).The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated.The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location.The induction coil with racetrack section can induce greater Bz,and a larger gap between the induction coil and the shield ring increases Bz.The mechanism for this effect is also discussed.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments...To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments are performed to verify theoretical analysis.When the excitation direction is along Y direction,a maximal output power about 0.139 mW can be harvested at a resistive load of 65kΩ and an excitation frequency of 136 Hz.Theoretical analysis agrees well with experimental results.Furthermore,the performance of multi-direction vibration energy harvester is experimentally tested.The results show that the multi-direction vibration energy harvester can harvest perfect energy as the excitation direction changes in XY plane,YZ plane,XZ plane and body diagonal plane of the harvester.展开更多
Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which ca...Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which can, at one time or another, create disturbances or other phenomena can be generated. This is why we have set ourselves the objective of studying the FDTD modeling of the influence of direct lightning strikes on the power transmitted by a High-Voltage power line. To do this, we have implemented Kirchhoff’s laws to model the power transmitted by a High-Voltage power line in a steady state. Calculating the electromagnetic field generated by lightning requires the lightning current along the channel and its spatiotemporal distribution, the bi-exponential models and that of engineers were chosen and used to reproduce the physical phenomena best. Several works have been published in the literature and various mathematical models are proposed, to study the filamentous nature of power lines which has led to a more flexible modelling, based on the transmission line model, associated with the field theory developed from Maxwell’s equations, which explain the interaction between a lightning wave and a power transmission line. The resolution of the line equations in the lightning shock regime was the subject of the FDTD method to obtain the results in the spatio-temporal domain. Through this research, we are interested in the study of the spatiotemporal distribution of the lightning current wave to model the radiated electromagnetic field and to examine the influence of the overvoltage induced by the atmospheric discharge on the transportable power of a High Voltage AC Transmission line, for good selective protection to illuminate the parasites. 2D simulations based on proposed models were developed as well as the verification of the consistency of the different models, by comparing the fractal dimensions of the results of our program with those of the figures obtained experimentally. The aspects developed in this article could have direct implications in practical applications in the engineering and design of high-voltage transmission systems.展开更多
Power measurement is necessary for an electron cyclotron resonance heating(ECRH)system.The directional coupler method has been put forward to monitor high-power microwave from gyrotrons in real time.A multi-hole direc...Power measurement is necessary for an electron cyclotron resonance heating(ECRH)system.The directional coupler method has been put forward to monitor high-power microwave from gyrotrons in real time.A multi-hole directional coupler has been designed and manufactured for the 105 GHz/500 kW ECRH system on the J-TEXT tokamak.During the design process,we established the relationships between hole parameters and coupling characteristics based on the multi-hole coupling method and small-hole coupling theory.High-power tests have been carried out.The results indicated the reasonability of the theoretical design and practicality of the fabricated directional coupler.Sources of test errors have been discussed in detail,and the influences of spurious modes on the directional couplers have been emphatically analyzed.展开更多
The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR ground...The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.展开更多
Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper ...Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.展开更多
The sub-forum on standardization of new energy and direct-current diversified applications was held on July 9,which gathered leaders and experts to discuss how to thoroughly implement the national green power direct c...The sub-forum on standardization of new energy and direct-current diversified applications was held on July 9,which gathered leaders and experts to discuss how to thoroughly implement the national green power direct connection policy proposed in the transformation of the energy landscape,pool wisdom to tackle bottlenecks in the industrialization of DC technology,and leverage the role of standardization in coordinating and regulating the diversified applications of DC technology.It was designed to promote the establishment of a collaborative,open,and advanced global standards system for DC technology.展开更多
The implementation of green energy transformation,clean energy power replacement and supply,and the construction of the new power system are the primary driving forces for achieving strategic goals of carbon peak and ...The implementation of green energy transformation,clean energy power replacement and supply,and the construction of the new power system are the primary driving forces for achieving strategic goals of carbon peak and carbon neutrality in China.The construction of the new power system is in a critical period of initiation and development,and it is necessary to clarify the direction of future development,clarify the current technical challenges and key technical issues,and determine the key technical tasks for the future.In this context,this study analyzes the development direction,technical issues,and key construction tasks of the new power system.Firstly,the development challenges of the new power system are analyzed from two aspects:the current si-tuation of flexible regulation resources and the safety issues related to frequency and voltage.Secondly,the direction of technological innovation is analyzed from four aspects:the multiple power sources complementarity technology,power source and power grid collaborative technology,power supply and load interaction tech-nology,and flexible and intelligent control technology.On this basis,three major technical issues are sorted out.Finally,the key construction tasks of the basic theory,flexible power generation,and collaborative control are detailed.展开更多
Revolving parts with complex surface structures are widely used in machinery and mechanical equipment. The ECM process provides its adequacy to cut hard materials with different shapes, and its applications are widely...Revolving parts with complex surface structures are widely used in machinery and mechanical equipment. The ECM process provides its adequacy to cut hard materials with different shapes, and its applications are widely increased, due to its outstanding advantages. In this paper, a new method for machining a convex strips structure on a cylinder by using site directed power interruption(SDPI) in the ECM process is presented. A variable correction value of the power-off time was defined and optimized to obtain the ideal interval for better machining accuracy and stability.The electric field distribution and the simulated convex profiles show that the stray current density can be reduced effectively by using the proposed method. The correction value has an important influence on the machining accuracy. A suitable correction value in the range of 0.6–1.2 s can effectively improve the machining accuracy of the convex strips structure. Experiments were also conducted to verify the proposed method. Results have confirmed that the stray corrosion on the convex strips surface is significantly reduced and the machining accuracy of convex strips structure is remarkably improved by using the proposed method with a suitable correction value in the ECM process. Finally, a convex strip with a height of 2 mm on a thin-wall revolving part was also produced successfully using a correction value of 0.9.展开更多
To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-b...To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.展开更多
In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and th...In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise ei- gen-values).Firstly,according to the estimation of noise subspace obtained by the power method,a novel source number detection method without eigen-decomposition is proposed based on QR de- composition.Furthermore,the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm.To determine the source number and subspace,the computation complexity of the proposed algorithm is approximated as (2log_2 n+2.67)M^3,where n is the power of covariance matrix and M is the number of array ele- ments.Compared with the Single Vector Decomposition (SVD) based algorithm,it has a substantial computational saving with the approximation performance.The simulation results demonstrate its effectiveness and robustness.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
The experiments of large consumers direct power trading is conducting in china nationwide, and it’s important to the reform of electricity market. To compensated efficiencies in security correction of large consumers...The experiments of large consumers direct power trading is conducting in china nationwide, and it’s important to the reform of electricity market. To compensated efficiencies in security correction of large consumers direct power trading, a novel security correction method based on DC power transfer distribution factor was proposed. Using the presented method to comply security correction, all the transactions that satisfy the specific requirements of maximizing social welfare are able to enter security correction process, and when the power of transmission line is out of limit, this method avoid the transaction which causes this problem is abandoned directly by introducing supplement transactions. The simulation has shown that the proposed security correction method of large consumers direct power trading based on DC power transfer distribution factor is effective.展开更多
DBC substrates are the standard circuit boardsfor power modules. Using the DBC technologythick copper foils (0.125mm - 0.Tmm) arecladded to Alumina or Aluminum Nitride,The strong adhesion of the copper to ceramicbond ...DBC substrates are the standard circuit boardsfor power modules. Using the DBC technologythick copper foils (0.125mm - 0.Tmm) arecladded to Alumina or Aluminum Nitride,The strong adhesion of the copper to ceramicbond reduces the thermal expansion coefficientin horizontal direction only slightly above theTEC of the ceramic itself. This allows directsilicon attach of large dies without using TECcontrolling layers.As DBC technology is using copper foils,integralleads overhanging the ceramic can be realized...展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
Straight-blade Darrieus vertical axis wind turbines are used as medium and small size wind turbine because of higher power output in vertical axis wind turbine (VAWT). In our previous study, the relationship between t...Straight-blade Darrieus vertical axis wind turbines are used as medium and small size wind turbine because of higher power output in vertical axis wind turbine (VAWT). In our previous study, the relationship between the performance and Reynolds number based on airfoil chord length had been investigated by using small-scale test models of lift-type VAWT, and the results showed that the performance of tested wind turbine models with small diameter was clearly lower than that of the large-scale field test machine, and its performance also varies significantly with the blade pitch angle. In this study, we focused on the performance of a small-scale straight-blade Darrieus VAWT, the relationship among the blade airfoil camber direction and the pitch angle, and the performance of the small-scale VAWT was examined experimentally by using a small-scale VAWT test model with Gurney flap which was a small flat plate. Gurney flaps with its height h, as a ratio to the blade chord length c, <em>h/c</em> = 0.036 to 0.055, were attached to the blades of the VAWT test model, in addition, the attaching direction of the Gurney flap on the blade was examined for both inward and outward of the rotor, and the pitch angle was also examined for a range of <span style="white-space:nowrap;">−</span>5 to 10 degrees. These results are discussed comparing with the result of the VAWT without Gurney flap and considering the numerical results for the single blade with/without the Gurney flap. The results showed that the performance of the tested VAWT was reversed between the inward and outward Gurney flaps around a pitch angle of 10 degrees. That is, the inward Gurney flap was superior at a pitch angle of less than 10 degrees, while the outward Gurney flap was effective at a pitch angle of more than 10 degrees. Furthermore, for the tested small-scale VAWT model, the optimum pitch angle was about 5 degrees, and the inward and shorter Gurney flap showed higher power performance of the VAWT under this pitch angle condition.展开更多
Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional...Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.展开更多
基金financially supported by the National Key Research and Development Program of China(2023YFB3809300)。
文摘With the approaching of large-scale retirement of power lithium-ion batteries(LIBs),their urgent handling is required for environmental protection and resource reutilization.However,at present,substantial spent power batteries,especially for those high recovery value cathode materials,have not been greenly,sustainably,and efficiently recycled.Compared to the traditional recovery method for cathode materials with high energy consumption and severe secondary pollution,the direct repair regeneration,as a new type of short-process and efficient treatment methods,has attracted widespread attention.However,it still faces challenges in homogenization repair,electrochemical performance decline,and scaling-up production.To promote the direct regeneration technology development of failed NCM materials,herein we deeply discuss the failure mechanism of nickel-cobalt-manganese(NCM)ternary cathode materials,including element loss,Li/Ni mixing,phase transformation,structural defects,oxygen release,and surface degradation and reconstruction.Based on this,the detailed analysis and summary of the direct regeneration method embracing solid-phase sintering,eutectic salt assistance,solvothermal synthesis,sol-gel process,spray drying,and redox mediation are provided.Further,the upcycling strategy for regeneration materials,such as single-crystallization and high-nickelization,structural regulation,ion doping,and surface engineering,are discussed in deep.Finally,the challenges faced by the direct regeneration and corresponding countermeasures are pointed out.Undoubtedly,this review provides valuable guidance for the efficient and high-value recovery of failed cathode materials.
基金financially supported by the National Basic Research Program of China (Grant No.2011CB605504)
文摘Bottomless electromagnetic cold crucible is a new apparatus for continuous melting and directional solidification;however,improving its power efficiency and optimizing the configuration are important for experiment and production.In this study,a 3-D finite element (FE) method based on experimental verification was applied to calculate the magnetic flux density (Bz).The effects of the power parameters and the induction coil on the magnetic field distribution in the cold crucible were investigated.The results show that higher current intensity and lower frequency are beneficial to the increase of Bz at both the segment midpoint and the slit location.The induction coil with racetrack section can induce greater Bz,and a larger gap between the induction coil and the shield ring increases Bz.The mechanism for this effect is also discussed.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
基金Supported by the National Natural Science Foundation of China(51305183)the Qing Lan Project of Jiangsu Provincethe Doctoral Start-up Foundation of Jinling Institute of Technology(jit-b-201412)
文摘To predict the performance of multi-direction piezoelectric vibration energy harvester,an equation for calculating its output power is obtained based on elastic mechanics theory and piezoelectricity theory.Experiments are performed to verify theoretical analysis.When the excitation direction is along Y direction,a maximal output power about 0.139 mW can be harvested at a resistive load of 65kΩ and an excitation frequency of 136 Hz.Theoretical analysis agrees well with experimental results.Furthermore,the performance of multi-direction vibration energy harvester is experimentally tested.The results show that the multi-direction vibration energy harvester can harvest perfect energy as the excitation direction changes in XY plane,YZ plane,XZ plane and body diagonal plane of the harvester.
文摘Electric towers of high voltage transmission lines are more exposed to natural lightning phenomena thanks to their high heights. These lines are crossed by powerful current sources to dissipate in the ground, which can, at one time or another, create disturbances or other phenomena can be generated. This is why we have set ourselves the objective of studying the FDTD modeling of the influence of direct lightning strikes on the power transmitted by a High-Voltage power line. To do this, we have implemented Kirchhoff’s laws to model the power transmitted by a High-Voltage power line in a steady state. Calculating the electromagnetic field generated by lightning requires the lightning current along the channel and its spatiotemporal distribution, the bi-exponential models and that of engineers were chosen and used to reproduce the physical phenomena best. Several works have been published in the literature and various mathematical models are proposed, to study the filamentous nature of power lines which has led to a more flexible modelling, based on the transmission line model, associated with the field theory developed from Maxwell’s equations, which explain the interaction between a lightning wave and a power transmission line. The resolution of the line equations in the lightning shock regime was the subject of the FDTD method to obtain the results in the spatio-temporal domain. Through this research, we are interested in the study of the spatiotemporal distribution of the lightning current wave to model the radiated electromagnetic field and to examine the influence of the overvoltage induced by the atmospheric discharge on the transportable power of a High Voltage AC Transmission line, for good selective protection to illuminate the parasites. 2D simulations based on proposed models were developed as well as the verification of the consistency of the different models, by comparing the fractal dimensions of the results of our program with those of the figures obtained experimentally. The aspects developed in this article could have direct implications in practical applications in the engineering and design of high-voltage transmission systems.
基金supported by the National Key Research and Development Program of China (Nos.2017YFE0300200 and 2017YFE0300204)in part by National Natural Science Foundation of China(No.51821005).
文摘Power measurement is necessary for an electron cyclotron resonance heating(ECRH)system.The directional coupler method has been put forward to monitor high-power microwave from gyrotrons in real time.A multi-hole directional coupler has been designed and manufactured for the 105 GHz/500 kW ECRH system on the J-TEXT tokamak.During the design process,we established the relationships between hole parameters and coupling characteristics based on the multi-hole coupling method and small-hole coupling theory.High-power tests have been carried out.The results indicated the reasonability of the theoretical design and practicality of the fabricated directional coupler.Sources of test errors have been discussed in detail,and the influences of spurious modes on the directional couplers have been emphatically analyzed.
基金This paper is supported in part by the National Natural Science Foundations of China,and the Major Science and Technology Projects in Yunnan Province under Grant Nos.51667010,51807085,and 202002AF080001.
文摘The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.
基金supported by the key technology project of China Southern Power Grid Corporation(GZKJXM20220041)partly by theNational Key Research and Development Plan(2022YFE0205300).
文摘Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.
文摘The sub-forum on standardization of new energy and direct-current diversified applications was held on July 9,which gathered leaders and experts to discuss how to thoroughly implement the national green power direct connection policy proposed in the transformation of the energy landscape,pool wisdom to tackle bottlenecks in the industrialization of DC technology,and leverage the role of standardization in coordinating and regulating the diversified applications of DC technology.It was designed to promote the establishment of a collaborative,open,and advanced global standards system for DC technology.
基金supported by the China National Postdoctoral Program for Innovative Talents(BX20240135)the China Postdoctoral Science Foundation(2024M751066).
文摘The implementation of green energy transformation,clean energy power replacement and supply,and the construction of the new power system are the primary driving forces for achieving strategic goals of carbon peak and carbon neutrality in China.The construction of the new power system is in a critical period of initiation and development,and it is necessary to clarify the direction of future development,clarify the current technical challenges and key technical issues,and determine the key technical tasks for the future.In this context,this study analyzes the development direction,technical issues,and key construction tasks of the new power system.Firstly,the development challenges of the new power system are analyzed from two aspects:the current si-tuation of flexible regulation resources and the safety issues related to frequency and voltage.Secondly,the direction of technological innovation is analyzed from four aspects:the multiple power sources complementarity technology,power source and power grid collaborative technology,power supply and load interaction tech-nology,and flexible and intelligent control technology.On this basis,three major technical issues are sorted out.Finally,the key construction tasks of the basic theory,flexible power generation,and collaborative control are detailed.
基金supports provided by the State Key Program of the National Natural Science Foundation of China(No.51535006)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology of China
文摘Revolving parts with complex surface structures are widely used in machinery and mechanical equipment. The ECM process provides its adequacy to cut hard materials with different shapes, and its applications are widely increased, due to its outstanding advantages. In this paper, a new method for machining a convex strips structure on a cylinder by using site directed power interruption(SDPI) in the ECM process is presented. A variable correction value of the power-off time was defined and optimized to obtain the ideal interval for better machining accuracy and stability.The electric field distribution and the simulated convex profiles show that the stray current density can be reduced effectively by using the proposed method. The correction value has an important influence on the machining accuracy. A suitable correction value in the range of 0.6–1.2 s can effectively improve the machining accuracy of the convex strips structure. Experiments were also conducted to verify the proposed method. Results have confirmed that the stray corrosion on the convex strips surface is significantly reduced and the machining accuracy of convex strips structure is remarkably improved by using the proposed method with a suitable correction value in the ECM process. Finally, a convex strip with a height of 2 mm on a thin-wall revolving part was also produced successfully using a correction value of 0.9.
基金Project(2007dfa71250) supported by the International Science and Technology Cooperative Program of ChinaProject(20062250) supported by the Doctor Fund of North China Electric Power University, China
文摘To promote the modeling standardization process of the integrated circuits, an improved electrical simulation model for a direct power injection (DPI) setup which was used to measure the conducted immunity of a 16-bit microcontroller to radio frequency aggression was investigated. Based on the existing model of the same microcontroller, the PDN module was modified by adding the core, PLL and MD network models, which could reflect the actual electric distribution situation within the microcontroller more accurately. By comparing the simulation results with the measurement results, the effectiveness of the modified model can be improved to 500 MHz, and its uncertainty is within +1.8 dB (+2 dB is acceptable). Then, to improve the simulation accuracy of the complete model in the high frequency range, the I/O model which contained the dynamic and nonlinear characteristics reflecting the variation of the internal impedance of the microcontroller with increasing the frequency of the external noise was introduced. By comparing the simulation results with the measurement results, the effectiveness of the second modified model can be improved up to 1.4 GHz with the uncertainty of ~1.8 dB. Thus, a conclusion can be reached that the proposed model can be applied to a much wider frequency range with a smaller uncertainty than the latest model of the similar type. Furthermore, associated with the electromagnetic emission testing platform model, the PDN module can also be used to predict the electromagnetic conducted and radiated emission characteristics. This modeling method can also be applied to other integrated circuits, which is very helpful to the standardization of the IC electromagnetic compatibility (EMC) modeling process.
基金Supported by the National Natural Science Foundation of China (No.60102005).
文摘In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise ei- gen-values).Firstly,according to the estimation of noise subspace obtained by the power method,a novel source number detection method without eigen-decomposition is proposed based on QR de- composition.Furthermore,the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm.To determine the source number and subspace,the computation complexity of the proposed algorithm is approximated as (2log_2 n+2.67)M^3,where n is the power of covariance matrix and M is the number of array ele- ments.Compared with the Single Vector Decomposition (SVD) based algorithm,it has a substantial computational saving with the approximation performance.The simulation results demonstrate its effectiveness and robustness.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
文摘The experiments of large consumers direct power trading is conducting in china nationwide, and it’s important to the reform of electricity market. To compensated efficiencies in security correction of large consumers direct power trading, a novel security correction method based on DC power transfer distribution factor was proposed. Using the presented method to comply security correction, all the transactions that satisfy the specific requirements of maximizing social welfare are able to enter security correction process, and when the power of transmission line is out of limit, this method avoid the transaction which causes this problem is abandoned directly by introducing supplement transactions. The simulation has shown that the proposed security correction method of large consumers direct power trading based on DC power transfer distribution factor is effective.
文摘DBC substrates are the standard circuit boardsfor power modules. Using the DBC technologythick copper foils (0.125mm - 0.Tmm) arecladded to Alumina or Aluminum Nitride,The strong adhesion of the copper to ceramicbond reduces the thermal expansion coefficientin horizontal direction only slightly above theTEC of the ceramic itself. This allows directsilicon attach of large dies without using TECcontrolling layers.As DBC technology is using copper foils,integralleads overhanging the ceramic can be realized...
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
文摘Straight-blade Darrieus vertical axis wind turbines are used as medium and small size wind turbine because of higher power output in vertical axis wind turbine (VAWT). In our previous study, the relationship between the performance and Reynolds number based on airfoil chord length had been investigated by using small-scale test models of lift-type VAWT, and the results showed that the performance of tested wind turbine models with small diameter was clearly lower than that of the large-scale field test machine, and its performance also varies significantly with the blade pitch angle. In this study, we focused on the performance of a small-scale straight-blade Darrieus VAWT, the relationship among the blade airfoil camber direction and the pitch angle, and the performance of the small-scale VAWT was examined experimentally by using a small-scale VAWT test model with Gurney flap which was a small flat plate. Gurney flaps with its height h, as a ratio to the blade chord length c, <em>h/c</em> = 0.036 to 0.055, were attached to the blades of the VAWT test model, in addition, the attaching direction of the Gurney flap on the blade was examined for both inward and outward of the rotor, and the pitch angle was also examined for a range of <span style="white-space:nowrap;">−</span>5 to 10 degrees. These results are discussed comparing with the result of the VAWT without Gurney flap and considering the numerical results for the single blade with/without the Gurney flap. The results showed that the performance of the tested VAWT was reversed between the inward and outward Gurney flaps around a pitch angle of 10 degrees. That is, the inward Gurney flap was superior at a pitch angle of less than 10 degrees, while the outward Gurney flap was effective at a pitch angle of more than 10 degrees. Furthermore, for the tested small-scale VAWT model, the optimum pitch angle was about 5 degrees, and the inward and shorter Gurney flap showed higher power performance of the VAWT under this pitch angle condition.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05040301)the National Basic Research Program of China (Grant No. 2010CB951804)the National Natural Science Foundation of China (Grant No. 41101045)
文摘Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.