Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
This paper presents an integrated protection technique for power distribution systems. A novel integrated protection scheme based on overcurrent protection technique for distribution system is described, in which a sp...This paper presents an integrated protection technique for power distribution systems. A novel integrated protection scheme based on overcurrent protection technique for distribution system is described, in which a specially designed protection relay is installed at each substation of a network and responsible for the protection of every line sections connected to the substation busbar The conventional directional overcurrent and the new adaptive accelerated protection algorithms with multiple settings are implemented into the relay to cover all the protected line sections. The paper includes studies of a typical multi section distribution network to demonstrate the principle of the scheme. Studies show that the new scheme not only offer the new protection features for individual power line section, but also provide the characteristics of integrated protection.展开更多
The IGBT protection techniques applied in the design of inverter are proposed.Effective protection circuits are developed according to various conditions of overcurrent.Fast overcurrent protection circuit should be us...The IGBT protection techniques applied in the design of inverter are proposed.Effective protection circuits are developed according to various conditions of overcurrent.Fast overcurrent protection circuit should be used widely, so as to ensure reliableoperation of IGBT inverter.展开更多
As we all know, substation operation requires knowledge of different disciplines. In order to ensure the safety of substation operation and improve its operation efficiency, the negligence of details will cause seriou...As we all know, substation operation requires knowledge of different disciplines. In order to ensure the safety of substation operation and improve its operation efficiency, the negligence of details will cause serious potential safety hazards in a specific environment or at a specific time, which may lead to safety accidents. In order to improve the overall efficiency and quality of substation operation, the overcurrent protection in complex voltage direction of Substation operation is briefly discussed.展开更多
Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this...Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.展开更多
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
文摘This paper presents an integrated protection technique for power distribution systems. A novel integrated protection scheme based on overcurrent protection technique for distribution system is described, in which a specially designed protection relay is installed at each substation of a network and responsible for the protection of every line sections connected to the substation busbar The conventional directional overcurrent and the new adaptive accelerated protection algorithms with multiple settings are implemented into the relay to cover all the protected line sections. The paper includes studies of a typical multi section distribution network to demonstrate the principle of the scheme. Studies show that the new scheme not only offer the new protection features for individual power line section, but also provide the characteristics of integrated protection.
文摘The IGBT protection techniques applied in the design of inverter are proposed.Effective protection circuits are developed according to various conditions of overcurrent.Fast overcurrent protection circuit should be used widely, so as to ensure reliableoperation of IGBT inverter.
文摘As we all know, substation operation requires knowledge of different disciplines. In order to ensure the safety of substation operation and improve its operation efficiency, the negligence of details will cause serious potential safety hazards in a specific environment or at a specific time, which may lead to safety accidents. In order to improve the overall efficiency and quality of substation operation, the overcurrent protection in complex voltage direction of Substation operation is briefly discussed.
文摘Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.