Interaction of dynamic magnetic island with bootstrap current in toroidal plasmas is investigated based on the first principles of kinetic simulation.The perturbed magnetic and electric fields associated with the dyna...Interaction of dynamic magnetic island with bootstrap current in toroidal plasmas is investigated based on the first principles of kinetic simulation.The perturbed magnetic and electric fields associated with the dynamic magnetic island are calculated from a three-dimensional toroidal MHD code(CLT),instead of artificial imposed magnetic island perturbation.Inside the static magnetic island,the bootstrap current decreases as expected with the effective collision frequency.The radial electric field Erassociated with dynamic island could cause the E×B drift,which can noticeably modify the bootstrap current distribution.If the bootstrap current turns on when the tearing mode saturates,the widths of magnetic islands ascend rapidly and saturate again for both static and dynamic cases.But the saturated island width of the dynamic case is smaller than that of the static case because the magnetic islands in the dynamic case rotate due to strong asymmetric distribution of the bootstrap current in the vicinity of the X-points.展开更多
Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM...Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.展开更多
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ...Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.展开更多
Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy cu...Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.展开更多
In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2...In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.展开更多
We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act ...We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.展开更多
High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/Mg...High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack.Under the assistance of an out-of-plane magnetic field,the magnetization can be fully reversed with a current density of about 10^(4)A/cm^(2).The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque.It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque,and the current-driven magnetization reversal will be more efficient in low-temperature range,while the magnetic field is helpful for the magnetization reversal in high-temperature range.展开更多
Saturation is a condition in which the magnets are fully transformer cores and generate maximum magnetic flux. Some parts affect the resilience and create distortions that can harm the heart. Core saturation can also ...Saturation is a condition in which the magnets are fully transformer cores and generate maximum magnetic flux. Some parts affect the resilience and create distortions that can harm the heart. Core saturation can also increase the temperature and magnetization current transformer. In this study, we proposed a measurement method to obtain the necessary parameters to calculate a reliable indicator of the state of the transformer core saturation. The main effects of nonlinear flow in the transformer core are saturation, eddy current and hysteresis. In saturation, the core transformer is as a source of generating harmonic currents, some of which will flow directly to the primary and secondary windings. The method is based on the magnetization current, the phenomenon of harmonics and power factor is evaluated by measuring the no-load current at three-phase transformer, with a high magnetic flux density imposed. Measurements were taken at each phase of the transformer core. The transformer is connected to a variable voltage variable frequency (VVVF) as a voltage source and the investigation carried out at various flux densities. The results showed that the magnetization current and harmonic phenomena increased significantly when the high magnetic flux density and vice versa injected with power factor declined sharply. This phenomenon can be used as an indication of saturation of the 3-phase transformer core.展开更多
The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW...The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW.This increase makes the on-orbit beam more sensitive to disturbances in various parts of the accelerator,including the RCS magnet power supply system.This paper presents a method for reducing the high-order harmonic current error in resonant power supplies for dipole magnets and examines its impact on the horizontal orbit offset of the beam.It adopts a control scheme that combines high-order harmonic current compensation with PI double-loop control of the resonant power supply.By utilizing the existing digital controller hardware in the RCS power supply system,this study demonstrates how to achieve precise control of the 50 Hz harmonic current output in a cost-effective manner.Ultimately,it enhances performance by reducing the current error by up to 50%and provides methodological support for future upgrades to the power supply system.Such improvements enhance the stability of the RCS,reducing the beam horizontal orbit deviation by at least 19.8%.展开更多
As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additi...As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additionally,there is a growing need to address the alternating magnetic fields produced by the spacecraft itself.This paper introduces a novel modeling method for spacecraft magnetic dipoles using an integrated self-attention mechanism and a transformer combined with Kolmogorov-Arnold Networks.The self-attention mechanism captures correlations among globally sparse data,establishing dependencies b.etween sparse magnetometer readings.Concurrently,the Kolmogorov-Arnold Network,proficient in modeling implicit numerical relationships between data features,enhances the ability to learn subtle patterns.Comparative experiments validate the capability of the proposed method to precisely model magnetic dipoles,achieving maximum Root Mean Square Errors of 24.06 mA·m^(2)and 0.32 cm for size and location modeling,respectively.The spacecraft magnetic model established using this method accurately computes magnetic fields and alternating magnetic fields at designated surfaces or points.This approach facilitates the rapid and precise construction of individual and complete spacecraft magnetic models,enabling the verification of magnetic specifications from the spacecraft design phase.展开更多
The effect from the interaction of the alternating current(AC)magnetic field with kilogram-level test mass(TM)limits the detectivity of the TianQin space-based gravitational wave detection.The quantifed effect require...The effect from the interaction of the alternating current(AC)magnetic field with kilogram-level test mass(TM)limits the detectivity of the TianQin space-based gravitational wave detection.The quantifed effect requires the determination of the AC magnetic susceptibilityχ(f)of the TM.A torque method is proposed to measure theχ(f)of kg-level samples at the mHz band with a precision of 1×10^(-7).Combined with our previous work[Phys.Rev.Appl.18044010(2022)],the general frequency-dependent susceptibility of the alloy cube with side length L and electrical conductivityσis determined asχ(f)=χ0+(0.24±0.01)σμ0L^(2)f from 0.1 mHz to 1 Hz.The determination is helpful for the preliminary estimation of the in-band eddy current efect in the TianQin noise budget.The technique can be adopted to accurately measureχ(f)of the actual TM in other precision experiments,where the magnetic noise is a signifcant detection limit.展开更多
The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-...The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.展开更多
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul...The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.展开更多
In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous p...In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.展开更多
Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhib- its satisfactory outcomes...Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhib- its satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in im- proving the spasticity post-stroke, more prospective cohort studies involving large sample sizes are needed.展开更多
It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current mult...It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.展开更多
A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/...A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/cm. In the paper, the current loss of an MITL made of stainless steel, which is usually used in large pulse power generators, is experimentally studied, and possible mechanisms to explain the current loss of the MITL are analyzed and discussed. From the experimental results, the relationship between loss current density and input current density follows approximately a power law. The loss is also related to the configuration of the MITL.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03100000,2019YFE03020003 and 2019YFE03030004)National Natural Science Foundation of China(Nos.11835010,12305236 and 12375224)Innovation Program of Southwestern Institute of Physics(No.202301XWCX001)。
文摘Interaction of dynamic magnetic island with bootstrap current in toroidal plasmas is investigated based on the first principles of kinetic simulation.The perturbed magnetic and electric fields associated with the dynamic magnetic island are calculated from a three-dimensional toroidal MHD code(CLT),instead of artificial imposed magnetic island perturbation.Inside the static magnetic island,the bootstrap current decreases as expected with the effective collision frequency.The radial electric field Erassociated with dynamic island could cause the E×B drift,which can noticeably modify the bootstrap current distribution.If the bootstrap current turns on when the tearing mode saturates,the widths of magnetic islands ascend rapidly and saturate again for both static and dynamic cases.But the saturated island width of the dynamic case is smaller than that of the static case because the magnetic islands in the dynamic case rotate due to strong asymmetric distribution of the bootstrap current in the vicinity of the X-points.
基金supported in part by the National Natural Science Foundation of China under Grant 51977099。
文摘Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-53)Initial Research Funds for Young Teachers of Donghua University,China(104070053029)Shanghai Rising-Star Program,China(No.19QA1400400)。
文摘Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
文摘Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.
基金supported by the National Natural Science Foundation of China(Grant Nos.42474200 and 42174186)Chao Xiong is supported by the Dragon 6 cooperation 2024-2028(Project No.95437).
文摘In this study,we present a comprehensive evaluation of the magnetic field measurements from the Vector Field Magnetometer(VFM)aboard the recently launched Macao Science Satellite-1(MSS-1).One-year data from November 2,2023,to November 1,2024,are considered.The MSS-1 flies with a low inclination(41°)and is designed to provide high-resolution magnetic field measurements,especially for monitoring the evolution of the South Atlantic Anomaly.Earlier studies confirmed the possibility of using MSS-1A data to model the Earth’s main magnetic field(e.g.,Jiang Y et al.,2024).Therefore,in this study we focus on the magnetic signatures related to the external field,which are primarily associated with magnetospheric and ionospheric currents.The global distributions of the magnetic residuals from MSS-1A show a pattern consistent with that derived from the European Space Agency’s Swarm A satellite.A statistical survey of the conjugated observations(withΔt<5 min andΔR<150 km)between the two satellites showed that the difference between their magnetic residuals is within±3 nanoteslas.By separating the magnetic residuals at the noon and midnight hours,we see that the MSS-1A data can effectively capture features of the magnetospheric and ionospheric currents,such as the magnetospheric ring current and ionospheric equatorial electrojet.Moreover,the magnetic residuals from MSS-1A show a diamagnetic effect caused by post-sunset equatorial plasma bubbles,which also suggests that the MSS-1A data have the potential to reveal the ionospheric structures.The comprehensive evaluations performed within this study demonstrate that the MSS-1A provides high-quality magnetic field data reaching the level of the Swarm satellite,which enables a deeper understanding of the modeling of Earth’s magnetic field as well as monitoring of the magnetic environment.
基金supported by the National Natural Science Foundation of China(Grant No.11274236)the Deutsche Forschungsgemeinschaft via SFB 689
文摘We investigate magnetization reversal of two-body uniaxial Stoner particles, by injecting spin-polarized current through a spin-valve structure. The two-body Stoner particles perform synchronized dynamics and can act as an information bit in computer technology. In the presence of magnetic dipole–dipole interaction(DDI) between the two particles,the critical switching current Ic for reversing the two dipoles is analytically obtained and numerically verified in two typical geometric configurations. The Ic bifurcates at a critical DDI strength, where Ic can decrease to about 70% of the usual value without DDI. Moreover, we also numerically investigate the magnetic hysteresis loop, magnetization self-precession,reversal time and synchronization stability phase diagram for the two-body system in the synchronized dynamics regime.
基金supported by the ISF-NSFC Joint Research Project of International Cooperation and Exchanges(Grant No.51961145305)the National Natural Science Foundation of China(Grant Nos.52171191 and 51771145)+1 种基金the Shaanxi Key Program for International Science and Technology Cooperation Projects(Grant No.2021KWZ-12)the Youth Innovation Team of Shaanxi Universities
文摘High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack.Under the assistance of an out-of-plane magnetic field,the magnetization can be fully reversed with a current density of about 10^(4)A/cm^(2).The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque.It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque,and the current-driven magnetization reversal will be more efficient in low-temperature range,while the magnetic field is helpful for the magnetization reversal in high-temperature range.
文摘Saturation is a condition in which the magnets are fully transformer cores and generate maximum magnetic flux. Some parts affect the resilience and create distortions that can harm the heart. Core saturation can also increase the temperature and magnetization current transformer. In this study, we proposed a measurement method to obtain the necessary parameters to calculate a reliable indicator of the state of the transformer core saturation. The main effects of nonlinear flow in the transformer core are saturation, eddy current and hysteresis. In saturation, the core transformer is as a source of generating harmonic currents, some of which will flow directly to the primary and secondary windings. The method is based on the magnetization current, the phenomenon of harmonics and power factor is evaluated by measuring the no-load current at three-phase transformer, with a high magnetic flux density imposed. Measurements were taken at each phase of the transformer core. The transformer is connected to a variable voltage variable frequency (VVVF) as a voltage source and the investigation carried out at various flux densities. The results showed that the magnetization current and harmonic phenomena increased significantly when the high magnetic flux density and vice versa injected with power factor declined sharply. This phenomenon can be used as an indication of saturation of the 3-phase transformer core.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120030).
文摘The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW.This increase makes the on-orbit beam more sensitive to disturbances in various parts of the accelerator,including the RCS magnet power supply system.This paper presents a method for reducing the high-order harmonic current error in resonant power supplies for dipole magnets and examines its impact on the horizontal orbit offset of the beam.It adopts a control scheme that combines high-order harmonic current compensation with PI double-loop control of the resonant power supply.By utilizing the existing digital controller hardware in the RCS power supply system,this study demonstrates how to achieve precise control of the 50 Hz harmonic current output in a cost-effective manner.Ultimately,it enhances performance by reducing the current error by up to 50%and provides methodological support for future upgrades to the power supply system.Such improvements enhance the stability of the RCS,reducing the beam horizontal orbit deviation by at least 19.8%.
基金supported by the National Key Research and Development Program of China(2020YFC2200901)。
文摘As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additionally,there is a growing need to address the alternating magnetic fields produced by the spacecraft itself.This paper introduces a novel modeling method for spacecraft magnetic dipoles using an integrated self-attention mechanism and a transformer combined with Kolmogorov-Arnold Networks.The self-attention mechanism captures correlations among globally sparse data,establishing dependencies b.etween sparse magnetometer readings.Concurrently,the Kolmogorov-Arnold Network,proficient in modeling implicit numerical relationships between data features,enhances the ability to learn subtle patterns.Comparative experiments validate the capability of the proposed method to precisely model magnetic dipoles,achieving maximum Root Mean Square Errors of 24.06 mA·m^(2)and 0.32 cm for size and location modeling,respectively.The spacecraft magnetic model established using this method accurately computes magnetic fields and alternating magnetic fields at designated surfaces or points.This approach facilitates the rapid and precise construction of individual and complete spacecraft magnetic models,enabling the verification of magnetic specifications from the spacecraft design phase.
基金supported by the National Key R&D Program of China(Grant No.2020YFC2200500)the Key Laboratory of Tian Qin Project(Sun Yat-sen University),Ministry of Education+1 种基金the National Natural Science Foundation of China(Grant Nos.12075325,12005308,and 11605065)the Doctoral Research Foundation Project of Hubei University of Arts and Science(Grant No.kyqdf2059017)。
文摘The effect from the interaction of the alternating current(AC)magnetic field with kilogram-level test mass(TM)limits the detectivity of the TianQin space-based gravitational wave detection.The quantifed effect requires the determination of the AC magnetic susceptibilityχ(f)of the TM.A torque method is proposed to measure theχ(f)of kg-level samples at the mHz band with a precision of 1×10^(-7).Combined with our previous work[Phys.Rev.Appl.18044010(2022)],the general frequency-dependent susceptibility of the alloy cube with side length L and electrical conductivityσis determined asχ(f)=χ0+(0.24±0.01)σμ0L^(2)f from 0.1 mHz to 1 Hz.The determination is helpful for the preliminary estimation of the in-band eddy current efect in the TianQin noise budget.The technique can be adopted to accurately measureχ(f)of the actual TM in other precision experiments,where the magnetic noise is a signifcant detection limit.
基金supported by the National Natural Science Foundation of China(Grant Nos.12375236 and 12135009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050100 and XDA25010100).
文摘The generation and reconnection of magneticflux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequen-cies and opposite topological charges are investigated numerically by particle-in-cell simulations.It is shown that twisted plasma currents and hence magneticflux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency.More importantly,subsequent reconnection of magneticflux ropes can occur.Typical signatures of magnetic reconnection,such as magnetic island formation and plasma heating,are identified in the reconnection of magneticflux ropes.Notably,it is found that a strong axial magneticfield can be generated on the axis,owing to the azimuthal current induced during the reconnection of the ropes.This indicates that in the reconnection of magneticflux ropes,the energy can be transferred not only from the magneticfield to the plasma but also from the plasma current back to the magneticfield.This work opens a new avenue to the study of magneticflux ropes,which helps in understanding magnetic topology changes,and resultant magnetic energy dissipation,plasma heating,and particle acceleration found in solarflares,and magnetic confinement fusion devices.
基金Projects(51074031,51271042,50874022)supported by the National Natural Science Foundation of ChinaProject(2013M530913)supported by the China Postdoctoral Science FoundationProject(DUT12RC(3)35)supported by the Fundamental Research Funds for the Central Universities of China
文摘The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
文摘In this paper,a new simulating method is presented,using only the normal magnetizing curve (B-H) of the transformer core material,its geometric dimensions,the no-load power loss data and the concept of instantaneous power. At the end of this paper the simulating calculation using EMTP has been also performed for the same transformer. The comparison shows that the two sets of results are very close to each other,and proves the correctness of the new method. The new method presented in this paper is helpful to verify the correctness of the power transformer design,analyze the behavior of the transformer protection under switching and study the new transformer protection principles.
基金supported in part by grants from Foundation La MaratóTV3.No.PI110932
文摘Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhib- its satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in im- proving the spasticity post-stroke, more prospective cohort studies involving large sample sizes are needed.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB601007)the National Natural Science Foundation of China(Grant No.10674006)the National High Technology Research and Development Program of China(Grant No.2007AA03Z238)
文摘It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.
基金supported by National Natural Science Foundation of China(No.10905047)
文摘A magnetically insulated transmission line (MITL) is used to transmit high power electric pulses in large pulse power systems. However, current loss is unavoidable, especially when the current density is up to 1 MA/cm. In the paper, the current loss of an MITL made of stainless steel, which is usually used in large pulse power generators, is experimentally studied, and possible mechanisms to explain the current loss of the MITL are analyzed and discussed. From the experimental results, the relationship between loss current density and input current density follows approximately a power law. The loss is also related to the configuration of the MITL.