Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to thei...Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.展开更多
Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM...Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.展开更多
Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the ...Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.展开更多
In a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)system sharing a common DC bus,dual zero-sequence current(ZSC)loops are inherent,leading to increased inverter capacity usage,losses,an...In a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)system sharing a common DC bus,dual zero-sequence current(ZSC)loops are inherent,leading to increased inverter capacity usage,losses,and degraded operational performance.To mitigate ZSC,the dual zero-sequence equivalent circuit of the DTP-OW-PMSM system is established,and zero-vector combinations with significant zero-sequence voltage amplitudes are employed.Since the two sets of ZSC loops are independent,four zero-vector combinations can be determined.A ZSC suppression strategy utilizing hysteresis controllers is proposed.Compared with the PI controller,hysteresis controllers offer wider bandwidth and simplify control parameter tuning.Additionally,180-degree decoupling streamlines vector selection for multiphase open-winding topologies.Furthermore,the modulation range of the proposed strategy is investigated.Finally,experiment in a direct-drive motor is implemented,and experimental results confirming its effectiveness.展开更多
Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into...Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR ground...The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.展开更多
This paper reveals new contributions to the analysis and development of devices for harmonic distortion mitigation. Considering the sequential distribution of harmonic currents, zero-sequence components could be dimin...This paper reveals new contributions to the analysis and development of devices for harmonic distortion mitigation. Considering the sequential distribution of harmonic currents, zero-sequence components could be diminished using electromagnetic devices, particularly the eZSB (electromagnetic zero-sequence blocking). One important characteristic of this device, which has received particular attention on this research, is its robustness and low cost of construction. Theoretical and experimental results related to the behavior of the electromagnetic blocking devices are presented. The results illustrate the consistence of the theoretical aspects related with the model in the frequency domain, as well as the performance of the blocking devices, reducing zero-sequence harmonic currents, mainly by the conjunct action of the eZSF (electromagnetic zero-sequence harmonic filter), working as a impedance coupler. In this context, aiming the evaluation of the reliability of the results obtained through mathematical modeling, experimental tests have been carried out using a low-power prototype, highlighting particular aspects related to its function as a zero-sequence harmonic blocker.展开更多
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second...This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.展开更多
Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to charact...Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.展开更多
Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,...Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institut...Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.展开更多
As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.Thi...As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.This work establishes a dynamic behavior model of steel catenary risers(SCRs)with varying curvatures subjected to internal flow and external currents and considers the effects of pipe-soil interactions on the curvature profile.The governing equation is solved via the generalized integral transform technique(GITT),which yields a semi-analytical solution of a high-order nonlinear partial differential equation.Parametric studies are then performed to analyze the effects of varying curvature on the vibration frequency and amplitude of SCRs.The vibration frequency and amplitude increase with the touchdown angle and hang-off angle,although the effect of the hang-off angle is negligible.Additionally,as the curvature increases along the centerline axis,the position of the maximum amplitude of the SCR moves upward.展开更多
In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies...In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.展开更多
The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW...The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW.This increase makes the on-orbit beam more sensitive to disturbances in various parts of the accelerator,including the RCS magnet power supply system.This paper presents a method for reducing the high-order harmonic current error in resonant power supplies for dipole magnets and examines its impact on the horizontal orbit offset of the beam.It adopts a control scheme that combines high-order harmonic current compensation with PI double-loop control of the resonant power supply.By utilizing the existing digital controller hardware in the RCS power supply system,this study demonstrates how to achieve precise control of the 50 Hz harmonic current output in a cost-effective manner.Ultimately,it enhances performance by reducing the current error by up to 50%and provides methodological support for future upgrades to the power supply system.Such improvements enhance the stability of the RCS,reducing the beam horizontal orbit deviation by at least 19.8%.展开更多
This work proposes and fabricates the 4H-SiC power MOSFET with top oxide and double P-well(TODP-MOSFET)to enhance the single-event radiation tolerance of the gate oxide.Simulation results suggest that the proposed TOD...This work proposes and fabricates the 4H-SiC power MOSFET with top oxide and double P-well(TODP-MOSFET)to enhance the single-event radiation tolerance of the gate oxide.Simulation results suggest that the proposed TODP structure reduces the peak electric field within the oxide and minimizes the sensitive region by more than 70%compared to C-MOSFETs.Experimental results show that the gate degradation voltage of the TODP-MOSFET is higher than that of the C-MOSFET,and the gate leakage current is reduced by 95%compared to the C-MOSFET under heavy-ion irradiation with a linear energy transfer(LET)value exceeding 75 MeV·cm^(2)/mg.展开更多
The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia.Grid-forming renewable energy sources(GF-RES)has a significant improvement effect on system inertia.Co...The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia.Grid-forming renewable energy sources(GF-RES)has a significant improvement effect on system inertia.Commutation failure faults may cause a short-term reactive power surplus at the sending end and trigger transient overvoltage,threatening the safe and stable operation of the power grid.However,there is a lack of research on the calculation method of transient overvoltage caused by commutation failure in high-voltage DC transmission systems with grid-forming renewable energy sources integration.Based on the existing equivalent model of highvoltage DC transmission systems at the sending end,this paper proposes to construct a model of the high-voltage DC transmission system at the sending end with grid-forming renewable energy sources.The paper first clarifies the mechanism of overvoltage generation,then considers the reactive power droop control characteristics of GF-RES,and derives the transient voltage calculation model of theDC transmission system with GF-RES integration.It also proposes a calculation method for transient overvoltage at the sending-end converter bus with GF-RES integration.Based on the PSCAD/EMTDC simulation platform,this paper builds an experimental simulation model.By constructing three different experimental scenarios,the accuracy and effectiveness of the proposed transient overvoltage calculation method are verified,with a calculation error within 5%.At the same time,this paper quantitatively analyzes the impact of grid strength,new energy proportion,and rated transmission power on transient overvoltage from three different perspectives.展开更多
This paper investigates and analyzes the general situation of the tomato seed production industry in Lintong District,Xi'an City.Development strategies and suggestions are proposed to address existing problems.The...This paper investigates and analyzes the general situation of the tomato seed production industry in Lintong District,Xi'an City.Development strategies and suggestions are proposed to address existing problems.These include strengthening technological innovation and variety R&D,promoting industrial standardization and intelligent upgrading,enhancing brand building and market expansion,improving policy support and industrial chain coordination,strengthening intellectual property protection and talent cultivation,and expanding sales channels to promote industrial transformation and upgrading.展开更多
基金supported in part by National Key Research and Development Program of China(2016YFB0900603)Technology Projects of State Grid Corporation of China(52094017000W).
文摘Definite-time zero-sequence over-current protection is presently used in systems whose neutral point is grounded by a low resistance(low-resistance grounding systems).These systems frequently malfunction owing to their high settings of the action value when a high-impedance grounding fault occurs.In this study,the relationship between the zero-sequence currents of each feeder and the neutral branch was analyzed.Then,a grounding protection method was proposed on the basis of the zero-sequence current ratio coefficient.It is defined as the ratio of the zero-sequence current of the feeder to that of the neutral branch.Nonetheless,both zero-sequence voltage and zero-sequence current are affected by the transition resistance,The influence of transition resistance can be eliminated by calculating this coefficient.Therefore,a method based on the zero-sequence current ratio coefficient was proposed considering the significant difference between the faulty feeder and healthy feeder.Furthermore,unbalanced current can be prevented by setting the starting current.PSCAD simulation results reveal that the proposed method shows high reliability and sensitivity when a high-resistance grounding fault occurs.
基金supported in part by the National Natural Science Foundation of China under Grant 51977099。
文摘Dual three-phase permanent-magnet synchronous machines(DTP-PMSM)connected with a single neutral point provide a loop for zero-sequence current(ZSC).This paper proposes a novel space vector pulse width modulation(SVPWM)strategy to suppress the ZSC.Five vectors are selected as basic voltage vectors in one switching period.The fundamental and harmonic planes and the zero-sequence plane are taken into consideration to synthesis the reference voltage vector.To suppress the ZSC,a non-zero zero-sequence voltage(ZSV)is generated to compensate the third harmonic back-EMF.Rather than triangular carrier modulation,the sawtooth carrier modulation strategy is used to generate asymmetric PWM signals.The modulation range is investigated to explore the variation of modulation range caused by considering the zero-sequence plane.With the proposed method,the ZSC can be considerably reduced.The simulated and experimental results are presented to validate the effectiveness of the proposed modulation strategy.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-53)Initial Research Funds for Young Teachers of Donghua University,China(104070053029)Shanghai Rising-Star Program,China(No.19QA1400400)。
文摘Compared with the traditional three-phase star connection winding,the open-end winding permanent magnet synchronous motor(OW-PMSM)system with a common direct current(DC)bus has a zero-sequence circuit,which makes the common-mode voltage and the back electromotive force(EMF)harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit,and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system.A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM.Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model,the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation.Then zero-sequence loop constraints are established,so as to suppress the zero-sequence current.In the end,the control strategy proposed in this paper is verified by simulation experiments.
基金Supported by the National Natural Science Foundation of China(52025073).
文摘In a dual three-phase open-winding permanent magnet synchronous motor(DTP-OW-PMSM)system sharing a common DC bus,dual zero-sequence current(ZSC)loops are inherent,leading to increased inverter capacity usage,losses,and degraded operational performance.To mitigate ZSC,the dual zero-sequence equivalent circuit of the DTP-OW-PMSM system is established,and zero-vector combinations with significant zero-sequence voltage amplitudes are employed.Since the two sets of ZSC loops are independent,four zero-vector combinations can be determined.A ZSC suppression strategy utilizing hysteresis controllers is proposed.Compared with the PI controller,hysteresis controllers offer wider bandwidth and simplify control parameter tuning.Additionally,180-degree decoupling streamlines vector selection for multiphase open-winding topologies.Furthermore,the modulation range of the proposed strategy is investigated.Finally,experiment in a direct-drive motor is implemented,and experimental results confirming its effectiveness.
基金National Key Research and Development Program of China(2021YFB3700801)。
文摘Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
基金This paper is supported in part by the National Natural Science Foundations of China,and the Major Science and Technology Projects in Yunnan Province under Grant Nos.51667010,51807085,and 202002AF080001.
文摘The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.
文摘This paper reveals new contributions to the analysis and development of devices for harmonic distortion mitigation. Considering the sequential distribution of harmonic currents, zero-sequence components could be diminished using electromagnetic devices, particularly the eZSB (electromagnetic zero-sequence blocking). One important characteristic of this device, which has received particular attention on this research, is its robustness and low cost of construction. Theoretical and experimental results related to the behavior of the electromagnetic blocking devices are presented. The results illustrate the consistence of the theoretical aspects related with the model in the frequency domain, as well as the performance of the blocking devices, reducing zero-sequence harmonic currents, mainly by the conjunct action of the eZSF (electromagnetic zero-sequence harmonic filter), working as a impedance coupler. In this context, aiming the evaluation of the reliability of the results obtained through mathematical modeling, experimental tests have been carried out using a low-power prototype, highlighting particular aspects related to its function as a zero-sequence harmonic blocker.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under Grant Agreement No.871161from LASERLAB-EUROPE V under Grant Agreement No.871124+6 种基金from the Grant Agency of the Czech Republic(Grant No.GM23-05027M)Grant No.PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033by the European Union Next Generation EU/PRTRsupported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment Grant No.EQC2018-005230-Pfrom Grant No.PID2021-125389O A-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Unionfrom grants of the Junta de Castilla y León with Grant Nos.CLP263P20 and CLP087U16。
文摘This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers.
基金supported by the National Natural Science Foundation of China (42250101)the Macao Foundation. The computation made use of the high-performance computing resources at the center of the MSS data processing and analysis。
文摘Accurate modeling of Earth's ionospheric F-region currents is essential for refining geomagnetic field models and understanding magnetosphere-ionosphere coupling.In this study,we develop averaged models to characterize F-region currents using magnetic data from the MSS-1(Macao Science Satellite-1) and Swarm satellite missions.Our approach employs a toroidal field representation,utilizing spherical harmonics to capture spatial variations and Fourier series to represent temporal dynamics.Two models,Model-A and Model-B,derived from distinct datasets,are constructed to represent current patterns at altitudes of 450 km and 512 km,respectively.Our models successfully capture the primary spatial structures and seasonal variations of polar field-aligned currents.Additionally,they accurately reproduce the localized inter-hemispheric field-aligned currents observed in mid and low latitudes during solstices,particularly between 14:00 and 16:00 magnetic local times.These findings enhance our understanding of ionospheric F-region currents and contribute to more precise geomagnetic field modeling.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01).
文摘Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
文摘Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.
基金financially supported by the National Natural Science Foundation of China(Grant No.52201312).
文摘As oil and gas exploration moves into deeper waters,marine risers are subjected to increasingly complex service conditions,including vessel motions,ocean currents,seabed-soil interactions,and internal flow effects.This work establishes a dynamic behavior model of steel catenary risers(SCRs)with varying curvatures subjected to internal flow and external currents and considers the effects of pipe-soil interactions on the curvature profile.The governing equation is solved via the generalized integral transform technique(GITT),which yields a semi-analytical solution of a high-order nonlinear partial differential equation.Parametric studies are then performed to analyze the effects of varying curvature on the vibration frequency and amplitude of SCRs.The vibration frequency and amplitude increase with the touchdown angle and hang-off angle,although the effect of the hang-off angle is negligible.Additionally,as the curvature increases along the centerline axis,the position of the maximum amplitude of the SCR moves upward.
文摘In this study, we examined variability of sun-related energies, auroral electrojet current, ring current, and magnetopause current during solar cycles 23 and 24. The study revealed a dependence of sun-related energies to the Sun and Earth currents systems with solar activity from 1996 to 2019. A decrease in the correlation between sun-related energies and sunspot number was observed over solar cycles 23 and 24 (0.88 for the solar cycle 23 and 0.66 for the solar cycle 24), with a drop in the speed of magnetic disturbances in the solar wind. These results could be attributed to the decrease in Sun’s magnetic field toroidal component magnitude induced by a weak in sunspots number and solar flares during the solar cycle 24. A weak in the Earth currents systems (auroral electrojet current, ring current, and magnetopause current) is also observed. During the decrease in the Earth currents, several peaks are observed, indicating a nonlinear dependence in the Earth currents variation (ring current, auroral electrojet current, and magnetopause current) from solar cycle 23 to solar cycle 24. This could be attributed to the Corotating Interaction Regions (CIRs) observed during the declining phase of solar cycle 23 and the deep minimum preceding solar cycle 24.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023B1515120030).
文摘The rapid-cycling synchrotron(RCS)is a crucial device for proton beam acceleration at the China Spallation Neutron Source,operating at a repetition frequency of 25 Hz.The beam power was increased from 100 kW to 140 kW.This increase makes the on-orbit beam more sensitive to disturbances in various parts of the accelerator,including the RCS magnet power supply system.This paper presents a method for reducing the high-order harmonic current error in resonant power supplies for dipole magnets and examines its impact on the horizontal orbit offset of the beam.It adopts a control scheme that combines high-order harmonic current compensation with PI double-loop control of the resonant power supply.By utilizing the existing digital controller hardware in the RCS power supply system,this study demonstrates how to achieve precise control of the 50 Hz harmonic current output in a cost-effective manner.Ultimately,it enhances performance by reducing the current error by up to 50%and provides methodological support for future upgrades to the power supply system.Such improvements enhance the stability of the RCS,reducing the beam horizontal orbit deviation by at least 19.8%.
基金supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U2341220)the Hefei Comprehensive National Science Center。
文摘This work proposes and fabricates the 4H-SiC power MOSFET with top oxide and double P-well(TODP-MOSFET)to enhance the single-event radiation tolerance of the gate oxide.Simulation results suggest that the proposed TODP structure reduces the peak electric field within the oxide and minimizes the sensitive region by more than 70%compared to C-MOSFETs.Experimental results show that the gate degradation voltage of the TODP-MOSFET is higher than that of the C-MOSFET,and the gate leakage current is reduced by 95%compared to the C-MOSFET under heavy-ion irradiation with a linear energy transfer(LET)value exceeding 75 MeV·cm^(2)/mg.
基金supported by Key Natural Science Research Projects of Colleges and Universities in Anhui Province(2022AH051831).
文摘The integration of large-scale new energy and high-capacity DC transmission leads to a reduction in system inertia.Grid-forming renewable energy sources(GF-RES)has a significant improvement effect on system inertia.Commutation failure faults may cause a short-term reactive power surplus at the sending end and trigger transient overvoltage,threatening the safe and stable operation of the power grid.However,there is a lack of research on the calculation method of transient overvoltage caused by commutation failure in high-voltage DC transmission systems with grid-forming renewable energy sources integration.Based on the existing equivalent model of highvoltage DC transmission systems at the sending end,this paper proposes to construct a model of the high-voltage DC transmission system at the sending end with grid-forming renewable energy sources.The paper first clarifies the mechanism of overvoltage generation,then considers the reactive power droop control characteristics of GF-RES,and derives the transient voltage calculation model of theDC transmission system with GF-RES integration.It also proposes a calculation method for transient overvoltage at the sending-end converter bus with GF-RES integration.Based on the PSCAD/EMTDC simulation platform,this paper builds an experimental simulation model.By constructing three different experimental scenarios,the accuracy and effectiveness of the proposed transient overvoltage calculation method are verified,with a calculation error within 5%.At the same time,this paper quantitatively analyzes the impact of grid strength,new energy proportion,and rated transmission power on transient overvoltage from three different perspectives.
基金Supported by Research Project on Food Detection Technology Innovation and Standard Integration 2024(YNXM-2024-FW-019).
文摘This paper investigates and analyzes the general situation of the tomato seed production industry in Lintong District,Xi'an City.Development strategies and suggestions are proposed to address existing problems.These include strengthening technological innovation and variety R&D,promoting industrial standardization and intelligent upgrading,enhancing brand building and market expansion,improving policy support and industrial chain coordination,strengthening intellectual property protection and talent cultivation,and expanding sales channels to promote industrial transformation and upgrading.