The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea...The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.展开更多
The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium us...The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium used in VPF is one kind of semisolid, flowable and viscous material and its deformation behavior can be described by the visco-elastoplastic constitutive model. A sectional finite element model for the coupled deformation analysis between the viscoelastoplastic pressure-carrying medium and the elastoplastic sheet metal is proposed. The resolution of the Updated Lagrangian (UL) formulation is based on a static explicit approach. The frictional contact between sheet metal and visco-elastoplastic pressure-carrying medium is treated by the penalty function method. Coupled deformation between sheet metal and visco-elastoplastic pressure-carrying medium with large slip is analyzed to validate the developed algorithm. Finally, the viscous pressure bulging (VPB) process of DC06 sheet metal is simulated. Good agreement between numerical simulation results and experimental measurements shows the validity of the developed algorithm.展开更多
Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and d...Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.展开更多
This paper investigates Q420 dual-angle cross combined section columns under axial and eccentric compression by conducting experiments.The specimen parameters,experimental setup,and test results are presented.It showe...This paper investigates Q420 dual-angle cross combined section columns under axial and eccentric compression by conducting experiments.The specimen parameters,experimental setup,and test results are presented.It showed that local buckling occurred apparently for single internode specimens(λ<35)under axial compression,while overall bending buckling appeared for others,and no torsional buckling occurred.The theoretical formulas on stability factor were derived by the energy approach.Non-linear finite element models considering residual stress were established using ANSYS which were verified by the corresponding experimental results.The parametric study was to evaluate the effects of slenderness ratio(λ),width to thickness ratio of angles(b/t),the number of filled plate(n),load relative eccentricity(e)and the lateral support stiffness on the ultimate strengths of dual-angle cross combined section columns.Based on above analysis,the design equations are proposed by using curve fitting technique.It is shown from comparison between test results,finite element analysis and related specifications that the ultimate strength from theoretical formulas,proposed equations and finite element models are consistent with experiments results.展开更多
In order to decrease relative settlement, foundation treatment plays an extremely important role in bridgehead transition section, especially, the situation of building the bridge piles firstly, and then processing pi...In order to decrease relative settlement, foundation treatment plays an extremely important role in bridgehead transition section, especially, the situation of building the bridge piles firstly, and then processing piles. On the basis of engineering practice, the authors analyzed the influence of foundation treatment on bridge piles in bridgehead transition section by finite-element method (FEM). This research has positive significance in predicting displacement of bridge pile, directing construction of foundation treatment, and improving quality of engineering and so forth.展开更多
A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, th...A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, the dense grids are adjusted accordingly. Four cases with different loads are compared, thus the influences of different loads on the section are analyzed. Numerical results show that the maximum stress of the section is lower than the strength limit of the material, and the section will not be broken with the static loads.展开更多
Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,...Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,this study develops a reasonable numerical model for the SLWR to investigate the effects of the buoyancy section on its mechanical characteristics.In the SLWR model,the buoyancy section is simulated using an equivalent riser segment with the same outer diameter and unit weight.The riser is considered to be composed of a series of space vector particles connected by elements,and virtual reverse motions are applied to establish the fundamental equations of forces and displacements.The explicit central difference technique is used to solve the governing equations for particle motion within the riser through programming implementation.To provide a detailed explanation of the process by which the SLWR achieves a stable lazy-wave configuration,a numerical model of a 2800-m-long riser is established at a water depth of 1600 m,and the feasibility of this model for riser behavior analysis is validated.The remarkable influences of the position,length,number and spacing of the buoyancy section on the mechanical behavior of the SLWR are observed,which provides a theoretical foundation for the optimal design of the SLWR in deepwaters.展开更多
To estimate the geometric characteristics, especially wet areas and section areas, of three dimensional numerical conceptual aircraft models, a method based on surface elements is proposed. On the premise that numerou...To estimate the geometric characteristics, especially wet areas and section areas, of three dimensional numerical conceptual aircraft models, a method based on surface elements is proposed. On the premise that numerous surface elements are generated to represent each component surface, a component wet area of the surface is estimated by adding up the areas of such elements that are not covered by any other component surfaces. The elements are also used to get the section polygons of such composite surfaces as the whole aircraft at a given body station, then a section area is approximated with the sum of trapezoidal areas between such sides of polygons that are not covered by any other component and a reference axis. Practical application to a computer aided aircraft conceptual design system shows that the methed is applicable to different kinds of conceptual aircraft models and its precision is satisfying to the conceptual design.展开更多
Crashworthiness of a civil airplane fuselage section was studied in this paper. Firstly, the failure criterion of a rivet was studied by test, showing that the ultimate tension and shear failure loads were obviously a...Crashworthiness of a civil airplane fuselage section was studied in this paper. Firstly, the failure criterion of a rivet was studied by test, showing that the ultimate tension and shear failure loads were obviously affected by the loading speed. The relations between the loading speed and the average ultimate shear, tension loads were expressed by two logarithmic functions, Then, a vertical drop test of a civil airplane fuselage section was conducted with an actual impact velocity of 6.85 m/s, meanwhile the deformation of cabin frame and the accelerations at typical locations were measured. The finite element model of a main fuselage structure was developed and validated by modal test, and the error between the calculated frequencies and the test ones of the first four modes were less than 5%. Numerical simulation of the drop test was performed by using the LS-DYNA code and the simulation results show a good agreement with that of drop test. Deforming mode of the analysis was the same as the drop test; the maximum average rigid acceleration in test was 8.8 l g while the calculated one was 9.17g, with an error of 4.1%; average maximum test deformation at four points on the front cabin floor was 420 mm, while the calculated one was 406 mm, with an error of 3.2%; the peak value of the calculated acceleration at a typical location was 14.72g, which is lower than the test result by 5.46%; the calculated rebound velocity result was greater than the test result 17.8% and energy absorption duration was longer than the test result by 5.73%.展开更多
The paper makes some analyses on 11 trace elements in the Milanggouwan stratigraphical section in the Salawusu River valley, which is regarded as a prototype geology-palaeoclimate record since 150 ka BP. The results s...The paper makes some analyses on 11 trace elements in the Milanggouwan stratigraphical section in the Salawusu River valley, which is regarded as a prototype geology-palaeoclimate record since 150 ka BP. The results show that the content and variation of trace elements has experienced remarkably regular changes in the pace with coarse and fine sedimentary cycles of palaeo-aeolian sands to its overlying fluvio-lacustrine facies or/and palaeosols. The trace elements with chemical properties of relatively active (V, Sr, Cu, Ni, As) and relatively stable (P, Pb, Rb, Mn, Nb, Zr) are a manifestation of the corresponding 27 changeable cycles between peak and valley values, appearing a multi-fiuctuational process line of relative gathering and migration since then. The low numerical value distribution of these two types of trace elements in the aeolian sand facies represents erosion and accumulation under wind force during the cold-dry climate. Whereas their enrichments in both fluvio-lacustrine facies and palaeosols are related to the valley’s special low-lying physiognomic position between the Ordos Plateau and the Loess Plateau under the warm and humid climate conditions. The above relatively migrated and gathered change of the trace elements is the result of 27 climatic cycles of cold-dry and warm-humid, which is probably caused by repeated alternations of winter monsoon and summer monsoon in the Mu Us Sandy Land influenced by the climate vicissitudes in northern hemisphere during glacial and interglacial periods since 150 ka BP.展开更多
Blade clearance is an important technical parameter of the shear, which determines the shear quality of plate. The finite element method was used to simulate shearing process which is in the different specifications a...Blade clearance is an important technical parameter of the shear, which determines the shear quality of plate. The finite element method was used to simulate shearing process which is in the different specifications and blade clearances, and the impact on blade section and shearing force of blade clearance was analyzed. Comparing with traditional experience formulas and measured values, the limitations of the experience formulas were proved. And by contrasting with the shearing force data collected from Linfen Iron and Steel Company, the reliability of the finite element method was further proved. The simulated results show that the simulated values controlled by ductile fracture criterion and measured values are very close, and the deviation value is in the range of 4.8%-20.8%. For the same steel, if the plate is thicker, the blade clearance will be greater, and thickness and blade clearance are approximately linear. The difference between numerical simulation of the maximum shearing force and the measured results is 7.7% to 12.0%, and the simulation results are close to facts. With the increase of blade clearance and the thickness, the shearing force was increased to some degree.展开更多
With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretica...With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.展开更多
Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient ...Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.展开更多
Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated ...Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated by casting-cold extrusion was simulated by DEFORM software using tubes with four arc grooves. The stress and strain in different deformation zones were analyzed. The groove size reduces gradually and the groove shape drives to triangle during the extrusion procedure. The maximum values of equivalent effective stress and radial stress appear in groove zones, and the maximum equivalent effective strain firstly is obtained also in groove zones. The grain size in groove zones is less than that in other zones. The experimental results are consistent with simulation results, which prove that the copper tubes with sketch section are favorable to the metallurgy bond of boundary interface between aluminum and copper.展开更多
Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular p...Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular porthole die to produce hollow rectangle sections which are widely used in construction. The upper die was mainly studied. Because it is symmetrical, a quarter of the die was analyzed. The upper die was divided into 2199 elements with 3018 nodes. Elements were produced by four steps and the geometric shape of the die could be well simulated. The boundary condition was given according to the shape of the welding chamber and an empirical average extrusion stress was adopted, which was 210N/mm 2. Three-dimensional equivalent stresses were received. The original porthole die studied had obvious stress concentration and the stress distribution was very inhomogeneous, which would heavily affect the die life. A new design was proposed in which the portholes were rearranged and their shape and dimension were changed. According to the finite element analysis, the stress distribution of the improved die was quite homogeneous and the stress concentration was lessened.展开更多
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter...Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.展开更多
Electrical resistivity survey was carried out as part of an integrated study of a portion of Federal University of Technology Akure,Campus,South-- western Nigeria—a Basement terrain,to unravel the rock types;delineat...Electrical resistivity survey was carried out as part of an integrated study of a portion of Federal University of Technology Akure,Campus,South-- western Nigeria—a Basement terrain,to unravel the rock types;delineate structural elements such as fractures and determine the ground water zones which could be pin-pointed for water borehole drilling. Thirty-three(33) Vertical Electrical Sounding(VES) along seven traverse lines using the展开更多
Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = ...Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = πR^2 = a2, in which R stands for the circle radius on one end, and a the square side length on the other end; set up the coordinate system with OX axis on the central route in which the origin O is on centroid of the square end and assume the cross section size at x as the square shaped with all four comers filleted in radius r which is proportional to x, that is, the linear slope of r is R/L, thus, both values r and square side length ax can be attained on the constant cross section area assumption. Secondly, some sample polygonal-circular transition tubes along straight, circular and helical central route were implemented similarly. Thirdly, numerical analysis of stress and displacement of these tubes were carried out on MSC/PATRAN software which are important to the distribution of turbulent flow and the layout of these transitional tube structures.展开更多
A numerical investigation of thin-walled complex section steel columns with intermediate stiffeners was performed using finite element analysis. An accurate and reliable finite element model was developed and verified...A numerical investigation of thin-walled complex section steel columns with intermediate stiffeners was performed using finite element analysis. An accurate and reliable finite element model was developed and verified against test results. Veri-fication indicates that the model could predict the ultimate strengths and failure modes of the tested columns with reasonable accuracy. Therefore,the developed model was used for the parametric study. In addition,the effect of geometric imperfection on column ultimate strength and the effect of boundary conditions on the elastic distortional buckling of complex section columns were investigated. An equation for the elastic distortional buckling load of fixed-ended columns having different column lengths was proposed. The elastic distortional buckling load obtained from the proposed equation was used in the direct strength method to calculate the column ultimate strength. Generally,it is shown that the proposed design equation conservatively predicted the ultimate strengths of complex section columns with different column lengths.展开更多
文摘The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.
基金supported by the National Natural Science Foundation of China (No. 50275035)
文摘The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium used in VPF is one kind of semisolid, flowable and viscous material and its deformation behavior can be described by the visco-elastoplastic constitutive model. A sectional finite element model for the coupled deformation analysis between the viscoelastoplastic pressure-carrying medium and the elastoplastic sheet metal is proposed. The resolution of the Updated Lagrangian (UL) formulation is based on a static explicit approach. The frictional contact between sheet metal and visco-elastoplastic pressure-carrying medium is treated by the penalty function method. Coupled deformation between sheet metal and visco-elastoplastic pressure-carrying medium with large slip is analyzed to validate the developed algorithm. Finally, the viscous pressure bulging (VPB) process of DC06 sheet metal is simulated. Good agreement between numerical simulation results and experimental measurements shows the validity of the developed algorithm.
基金Project(F12-256-1-00)supported by the Key Laboratory Program of Shenyang City,ChinaProject(N090403006)supported by the Seed Cultivation Fund,ChinaProject supported by the Research Innovation Fund for Young Teachers,China
文摘Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.
文摘This paper investigates Q420 dual-angle cross combined section columns under axial and eccentric compression by conducting experiments.The specimen parameters,experimental setup,and test results are presented.It showed that local buckling occurred apparently for single internode specimens(λ<35)under axial compression,while overall bending buckling appeared for others,and no torsional buckling occurred.The theoretical formulas on stability factor were derived by the energy approach.Non-linear finite element models considering residual stress were established using ANSYS which were verified by the corresponding experimental results.The parametric study was to evaluate the effects of slenderness ratio(λ),width to thickness ratio of angles(b/t),the number of filled plate(n),load relative eccentricity(e)and the lateral support stiffness on the ultimate strengths of dual-angle cross combined section columns.Based on above analysis,the design equations are proposed by using curve fitting technique.It is shown from comparison between test results,finite element analysis and related specifications that the ultimate strength from theoretical formulas,proposed equations and finite element models are consistent with experiments results.
文摘In order to decrease relative settlement, foundation treatment plays an extremely important role in bridgehead transition section, especially, the situation of building the bridge piles firstly, and then processing piles. On the basis of engineering practice, the authors analyzed the influence of foundation treatment on bridge piles in bridgehead transition section by finite-element method (FEM). This research has positive significance in predicting displacement of bridge pile, directing construction of foundation treatment, and improving quality of engineering and so forth.
文摘A static finite element analysis (FEA) of an impulsive controller section is presented. The boundary condition and a part of the loads are applied. Considering the grades of the stress around the holes being large, the dense grids are adjusted accordingly. Four cases with different loads are compared, thus the influences of different loads on the section are analyzed. Numerical results show that the maximum stress of the section is lower than the strength limit of the material, and the section will not be broken with the static loads.
基金supported by the National Natural Science Foundation of China(Grant Nos.52471275,U23A20663,51809048,51909236)the Natural Science Foundation of Fujian Province(Grant No.2022J01092)+1 种基金the Natural Science Foundation of Zhejiang Province(Grant No.LY23E090004)the Ningbo Natural Science Foundation(Grant No.2021J039).
文摘Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,this study develops a reasonable numerical model for the SLWR to investigate the effects of the buoyancy section on its mechanical characteristics.In the SLWR model,the buoyancy section is simulated using an equivalent riser segment with the same outer diameter and unit weight.The riser is considered to be composed of a series of space vector particles connected by elements,and virtual reverse motions are applied to establish the fundamental equations of forces and displacements.The explicit central difference technique is used to solve the governing equations for particle motion within the riser through programming implementation.To provide a detailed explanation of the process by which the SLWR achieves a stable lazy-wave configuration,a numerical model of a 2800-m-long riser is established at a water depth of 1600 m,and the feasibility of this model for riser behavior analysis is validated.The remarkable influences of the position,length,number and spacing of the buoyancy section on the mechanical behavior of the SLWR are observed,which provides a theoretical foundation for the optimal design of the SLWR in deepwaters.
文摘To estimate the geometric characteristics, especially wet areas and section areas, of three dimensional numerical conceptual aircraft models, a method based on surface elements is proposed. On the premise that numerous surface elements are generated to represent each component surface, a component wet area of the surface is estimated by adding up the areas of such elements that are not covered by any other component surfaces. The elements are also used to get the section polygons of such composite surfaces as the whole aircraft at a given body station, then a section area is approximated with the sum of trapezoidal areas between such sides of polygons that are not covered by any other component and a reference axis. Practical application to a computer aided aircraft conceptual design system shows that the methed is applicable to different kinds of conceptual aircraft models and its precision is satisfying to the conceptual design.
基金supported by the Ministry Level Project of China
文摘Crashworthiness of a civil airplane fuselage section was studied in this paper. Firstly, the failure criterion of a rivet was studied by test, showing that the ultimate tension and shear failure loads were obviously affected by the loading speed. The relations between the loading speed and the average ultimate shear, tension loads were expressed by two logarithmic functions, Then, a vertical drop test of a civil airplane fuselage section was conducted with an actual impact velocity of 6.85 m/s, meanwhile the deformation of cabin frame and the accelerations at typical locations were measured. The finite element model of a main fuselage structure was developed and validated by modal test, and the error between the calculated frequencies and the test ones of the first four modes were less than 5%. Numerical simulation of the drop test was performed by using the LS-DYNA code and the simulation results show a good agreement with that of drop test. Deforming mode of the analysis was the same as the drop test; the maximum average rigid acceleration in test was 8.8 l g while the calculated one was 9.17g, with an error of 4.1%; average maximum test deformation at four points on the front cabin floor was 420 mm, while the calculated one was 406 mm, with an error of 3.2%; the peak value of the calculated acceleration at a typical location was 14.72g, which is lower than the test result by 5.46%; the calculated rebound velocity result was greater than the test result 17.8% and energy absorption duration was longer than the test result by 5.73%.
基金National Natural Science Foundation of China, No. 49971009State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment, CAS, No. SKLLQG0008+1 种基金National Key Project for Basic Research No. G2000048701
文摘The paper makes some analyses on 11 trace elements in the Milanggouwan stratigraphical section in the Salawusu River valley, which is regarded as a prototype geology-palaeoclimate record since 150 ka BP. The results show that the content and variation of trace elements has experienced remarkably regular changes in the pace with coarse and fine sedimentary cycles of palaeo-aeolian sands to its overlying fluvio-lacustrine facies or/and palaeosols. The trace elements with chemical properties of relatively active (V, Sr, Cu, Ni, As) and relatively stable (P, Pb, Rb, Mn, Nb, Zr) are a manifestation of the corresponding 27 changeable cycles between peak and valley values, appearing a multi-fiuctuational process line of relative gathering and migration since then. The low numerical value distribution of these two types of trace elements in the aeolian sand facies represents erosion and accumulation under wind force during the cold-dry climate. Whereas their enrichments in both fluvio-lacustrine facies and palaeosols are related to the valley’s special low-lying physiognomic position between the Ordos Plateau and the Loess Plateau under the warm and humid climate conditions. The above relatively migrated and gathered change of the trace elements is the result of 27 climatic cycles of cold-dry and warm-humid, which is probably caused by repeated alternations of winter monsoon and summer monsoon in the Mu Us Sandy Land influenced by the climate vicissitudes in northern hemisphere during glacial and interglacial periods since 150 ka BP.
基金Item Sponsored by National Key Basic Research Program of China (2012CB722801)
文摘Blade clearance is an important technical parameter of the shear, which determines the shear quality of plate. The finite element method was used to simulate shearing process which is in the different specifications and blade clearances, and the impact on blade section and shearing force of blade clearance was analyzed. Comparing with traditional experience formulas and measured values, the limitations of the experience formulas were proved. And by contrasting with the shearing force data collected from Linfen Iron and Steel Company, the reliability of the finite element method was further proved. The simulated results show that the simulated values controlled by ductile fracture criterion and measured values are very close, and the deviation value is in the range of 4.8%-20.8%. For the same steel, if the plate is thicker, the blade clearance will be greater, and thickness and blade clearance are approximately linear. The difference between numerical simulation of the maximum shearing force and the measured results is 7.7% to 12.0%, and the simulation results are close to facts. With the increase of blade clearance and the thickness, the shearing force was increased to some degree.
基金Project (No. X106871) supported by the Natural Science Foundation of Zhejiang Province,China
文摘With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.
基金The project was financially supported by the National Natural Science Foundation of China
文摘Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.
文摘Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated by casting-cold extrusion was simulated by DEFORM software using tubes with four arc grooves. The stress and strain in different deformation zones were analyzed. The groove size reduces gradually and the groove shape drives to triangle during the extrusion procedure. The maximum values of equivalent effective stress and radial stress appear in groove zones, and the maximum equivalent effective strain firstly is obtained also in groove zones. The grain size in groove zones is less than that in other zones. The experimental results are consistent with simulation results, which prove that the copper tubes with sketch section are favorable to the metallurgy bond of boundary interface between aluminum and copper.
文摘Porthole dies are important tools in extrusion process to produce hollow sections and the life of the dies counts for the cost of products. In this work, the finite element method was adopted to analyze a particular porthole die to produce hollow rectangle sections which are widely used in construction. The upper die was mainly studied. Because it is symmetrical, a quarter of the die was analyzed. The upper die was divided into 2199 elements with 3018 nodes. Elements were produced by four steps and the geometric shape of the die could be well simulated. The boundary condition was given according to the shape of the welding chamber and an empirical average extrusion stress was adopted, which was 210N/mm 2. Three-dimensional equivalent stresses were received. The original porthole die studied had obvious stress concentration and the stress distribution was very inhomogeneous, which would heavily affect the die life. A new design was proposed in which the portholes were rearranged and their shape and dimension were changed. According to the finite element analysis, the stress distribution of the improved die was quite homogeneous and the stress concentration was lessened.
基金supported by the National Natural Science Foundation of China (50725826)Specific Research on Cable-reinforced Membranes with Super Span and Complex Single-shell Structures of Expo Axis (08dz0580303)Shanghai Postdoctoral Fund (10R21416200)
文摘Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.
文摘Electrical resistivity survey was carried out as part of an integrated study of a portion of Federal University of Technology Akure,Campus,South-- western Nigeria—a Basement terrain,to unravel the rock types;delineate structural elements such as fractures and determine the ground water zones which could be pin-pointed for water borehole drilling. Thirty-three(33) Vertical Electrical Sounding(VES) along seven traverse lines using the
文摘Firstly, sample square-circular transition tube along straight central route was modeled on CATIA software. The parameters are as follows: let the tube length is L, and the constant cross section area is S, and S = πR^2 = a2, in which R stands for the circle radius on one end, and a the square side length on the other end; set up the coordinate system with OX axis on the central route in which the origin O is on centroid of the square end and assume the cross section size at x as the square shaped with all four comers filleted in radius r which is proportional to x, that is, the linear slope of r is R/L, thus, both values r and square side length ax can be attained on the constant cross section area assumption. Secondly, some sample polygonal-circular transition tubes along straight, circular and helical central route were implemented similarly. Thirdly, numerical analysis of stress and displacement of these tubes were carried out on MSC/PATRAN software which are important to the distribution of turbulent flow and the layout of these transitional tube structures.
基金Project supported by the Department of Education of Zhejiang Province (No.Y200804537)the Zhejiang University Zijin Project,and the Zhejiang College of Construction (No.200914), China
文摘A numerical investigation of thin-walled complex section steel columns with intermediate stiffeners was performed using finite element analysis. An accurate and reliable finite element model was developed and verified against test results. Veri-fication indicates that the model could predict the ultimate strengths and failure modes of the tested columns with reasonable accuracy. Therefore,the developed model was used for the parametric study. In addition,the effect of geometric imperfection on column ultimate strength and the effect of boundary conditions on the elastic distortional buckling of complex section columns were investigated. An equation for the elastic distortional buckling load of fixed-ended columns having different column lengths was proposed. The elastic distortional buckling load obtained from the proposed equation was used in the direct strength method to calculate the column ultimate strength. Generally,it is shown that the proposed design equation conservatively predicted the ultimate strengths of complex section columns with different column lengths.