In this paper, a new class of rings, called FIC rings, is introduced for studying quasi-zero-divisor graphs of rings. Let R be a ring. The quasi-zero-divisor graph of R, denoted by Г*(R), is a directed graph defin...In this paper, a new class of rings, called FIC rings, is introduced for studying quasi-zero-divisor graphs of rings. Let R be a ring. The quasi-zero-divisor graph of R, denoted by Г*(R), is a directed graph defined on its nonzero quasi-zero-divisors, where there is an arc from a vertex x to another vertex y if and only if xRy = 0. We show that the following three conditions on an FIC ring R are equivalent: (1) χ(R) is finite; (2) ω(R) is finite; (3) Nil* R is finite where Nil.R equals the finite intersection of prime ideals. Furthermore, we also completely determine the connectedness, the diameter and the girth of Г* (R).展开更多
In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those gra...In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those graphs whose diameters ≥ 1 and discussed six cases. This paper further discusses the other nine cases and also gives a complete characterization for the possible diameters for left Artin rings.展开更多
This paper introduces an ideal-boyed zero-divisor graph of non-commutative rings,denoted ΓI(R).ΓI(R) is a directed graph.The properties and possible structures of the graph is studied.
We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that...We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.展开更多
Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a an...Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in are adjacent if and only if and . In this paper, we investigate some combinatorial properties of the cozero-divisor graphs and such as connectivity, diameter, girth, clique numbers and planarity. We also study the cozero-divisor graphs of the direct products of two arbitrary commutative rings.展开更多
Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph correspond...Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph corresponds to the different chemical properties of compounds.Let a,b be are two positive integers,andΓ(Z_(a)×Z_(b))be the zero-divisor graph of the commutative ring Z_(a)×Z_(b).In this article some direct questions have been answered that can be utilized latterly in different applications.This study starts with simple computations,leading to a quite complex ring theoretic problems to prove certain properties.The theory of finite commutative rings is useful due to its different applications in the fields of advanced mechanics,communication theory,cryptography,combinatorics,algorithms analysis,and engineering.In this paper we determine the distance-based topological polynomials and indices of the zero-divisor graph of the commutative ring Z_(p^(2))×Z_(q)(for p,q as prime numbers)with the help of graphical structure analysis.The study outcomes help in understanding the fundamental relation between ring-theoretic and graph-theoretic properties of a zero-divisor graphΓ(G).展开更多
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ...Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.展开更多
With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p...With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.展开更多
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev...Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi...Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.展开更多
The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermo...The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.展开更多
Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to ...Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field.展开更多
基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其...基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其次,对GraphSAGE算法进行了改进,包括在消息传递阶段融合节点和边的特征,同时在消息聚合过程中考虑不同源节点对目标节点的影响程度,并在边嵌入生成时引入残差学习机制。在两个公开网络攻击数据集上的实验结果表明,在二分类情况下,所提算法的总体性能优于E-GraphSAGE、LSTM、RNN、CNN算法;在多分类情况下,所提算法在大多数攻击类型上的F1值高于对比算法。展开更多
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack...The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments.展开更多
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes...Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.展开更多
A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgra...A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgraph of G induced on the vertex set V(G) / {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G=Г(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G* has at least two connected components. We prove that the diameter of the induced graph G* is two if Z(R)2 ≠{0}, Z(R)3 = {0} and Gc is connected. We determine the structure of R which has two distinct nonadjacent vertices a, fl C Z(R)*/{c} such that the ideal [N(a)N(β)]{0} is generated by only one element of Z(R)*/{c}. We also completely determine the correspondence between commutative rings and finite complete graphs Kn with some end vertices adjacent to a single vertex of Kn.展开更多
Let R be an associative ring with identity and Z^*(K)be its set of non-zero zero-divisors.The undirected zero-divisor graph of R、denoted byΓ(R),is the graph whose vert ices are the non-zero zero-divisors of R、and w...Let R be an associative ring with identity and Z^*(K)be its set of non-zero zero-divisors.The undirected zero-divisor graph of R、denoted byΓ(R),is the graph whose vert ices are the non-zero zero-divisors of R、and where two distinct verticesγand s are adjacent if and only ifγs=0 or sγ=0.The dist ance bet ween vertices a and b is the length of the shortest path connecting them,and the diameter of the graph,diam(Γ(R)),is the superimum of these distances.In this paper,first we prove some results aboutΓ(R)of a semi-commutative ring R.Then,for a reversible ring R and a unique product monoid M、we prove 0≦diam(Γ(R))<diam(Γ(R[M]))≦3.We describe all the possibilities for the pair diam(Γ(R))and diam(Γ(R[M])),strictly in terms of the properties of a ring R,where K is a reversible ring and M is a unique product monoid.Moreover,an example showing the necessity of our assumptions is provided.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1137134311161006+4 种基金1166101411171142)the Guangxi Science Research and Technology Development Project(Grant No.1599005-2-13)the Scientic Research Fund of Guangxi Education Department(Grant No.KY2015ZD075)the Natural Science Foundation of Guangxi(Grant No.2016GXSFDA380017)
文摘In this paper, a new class of rings, called FIC rings, is introduced for studying quasi-zero-divisor graphs of rings. Let R be a ring. The quasi-zero-divisor graph of R, denoted by Г*(R), is a directed graph defined on its nonzero quasi-zero-divisors, where there is an arc from a vertex x to another vertex y if and only if xRy = 0. We show that the following three conditions on an FIC ring R are equivalent: (1) χ(R) is finite; (2) ω(R) is finite; (3) Nil* R is finite where Nil.R equals the finite intersection of prime ideals. Furthermore, we also completely determine the connectedness, the diameter and the girth of Г* (R).
基金Supported by the Natural Sciences Foundation of Guangxi Province(0575052, 0640070)Supported by the Innovation Project of Guangxi Graduate Education(2006106030701M05)Supported by the Scientific Research Foundation of Guangxi Educational Committee(200707LX233
文摘In [1], Joe Warfel investigated the diameter of a zero-divisor graph for a direct product R 1 × R 2 with respect to the diameter of the zero-divisor graph of R 1 and R 2 . But the author only considered those graphs whose diameters ≥ 1 and discussed six cases. This paper further discusses the other nine cases and also gives a complete characterization for the possible diameters for left Artin rings.
基金Supported by Guangxi Natural Sciences Foundation(0575052,0640070)Supported byInnovation Project of Guangxi Graduate Education(2006106030701M05)Supported Scientific Research Foun-dation of Guangxi Educational Committee
文摘This paper introduces an ideal-boyed zero-divisor graph of non-commutative rings,denoted ΓI(R).ΓI(R) is a directed graph.The properties and possible structures of the graph is studied.
基金Partially supported by the NSF (10071035) of China.
文摘We introduce the zero-divisor graph for an abelian regular ring and show that if R,S are abelian regular, then (K0(R),[R])≌(K0(S),[S]) if and only if they have isomorphic reduced zero-divisor graphs. It is shown that the maximal right quotient ring of a potent semiprimitive normal ring is abelian regular, moreover, the zero-divisor graph of such a ring is studied.
文摘Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in are adjacent if and only if and . In this paper, we investigate some combinatorial properties of the cozero-divisor graphs and such as connectivity, diameter, girth, clique numbers and planarity. We also study the cozero-divisor graphs of the direct products of two arbitrary commutative rings.
文摘Chemical compounds are modeled as graphs.The atoms of molecules represent the graph vertices while chemical bonds between the atoms express the edges.The topological indices representing the molecular graph corresponds to the different chemical properties of compounds.Let a,b be are two positive integers,andΓ(Z_(a)×Z_(b))be the zero-divisor graph of the commutative ring Z_(a)×Z_(b).In this article some direct questions have been answered that can be utilized latterly in different applications.This study starts with simple computations,leading to a quite complex ring theoretic problems to prove certain properties.The theory of finite commutative rings is useful due to its different applications in the fields of advanced mechanics,communication theory,cryptography,combinatorics,algorithms analysis,and engineering.In this paper we determine the distance-based topological polynomials and indices of the zero-divisor graph of the commutative ring Z_(p^(2))×Z_(q)(for p,q as prime numbers)with the help of graphical structure analysis.The study outcomes help in understanding the fundamental relation between ring-theoretic and graph-theoretic properties of a zero-divisor graphΓ(G).
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01296).
文摘Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.
基金funded by the Hunan Provincial Natural Science Foundation of China(Grant No.2025JJ70105)the Hunan Provincial College Students’Innovation and Entrepreneurship Training Program(Project No.S202411342056)The article processing charge(APC)was funded by the Project No.2025JJ70105.
文摘With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.
基金funded by the National Key Research and Development Program of China(Grant No.2024YFE0209000)the NSFC(Grant No.U23B2019).
文摘Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金supported by National Natural Science Foundation of China(62466045)Inner Mongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.
基金supported by the State Grid Southwest Branch Project“Research on Defect Diagnosis and Early Warning Technology of Relay Protection and Safety Automation Devices Based on Multi-Source Heterogeneous Defect Data”.
文摘The reliable operation of power grid secondary equipment is an important guarantee for the safety and stability of the power system.However,various defects could be produced in the secondary equipment during longtermoperation.The complex relationship between the defect phenomenon andmulti-layer causes and the probabilistic influence of secondary equipment cannot be described through knowledge extraction and fusion technology by existing methods,which limits the real-time and accuracy of defect identification.Therefore,a defect recognition method based on the Bayesian network and knowledge graph fusion is proposed.The defect data of secondary equipment is transformed into the structured knowledge graph through knowledge extraction and fusion technology.The knowledge graph of power grid secondary equipment is mapped to the Bayesian network framework,combined with historical defect data,and introduced Noisy-OR nodes.The prior and conditional probabilities of the Bayesian network are then reasonably assigned to build a model that reflects the probability dependence between defect phenomena and potential causes in power grid secondary equipment.Defect identification of power grid secondary equipment is achieved by defect subgraph search based on the knowledge graph,and defect inference based on the Bayesian network.Practical application cases prove this method’s effectiveness in identifying secondary equipment defect causes,improving identification accuracy and efficiency.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)support program(IITP-2025-RS-2023-00259497)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)and was supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Republic of Korea government(MSIT)(No.IITP-2025-RS-2023-00254129+1 种基金Graduate School of Metaverse Convergence(Sungkyunkwan University))was supported by the Basic Science Research Program of the National Research Foundation(NRF)funded by the Republic of Korean government(MSIT)(No.RS-2024-00346737).
文摘Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field.
文摘基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其次,对GraphSAGE算法进行了改进,包括在消息传递阶段融合节点和边的特征,同时在消息聚合过程中考虑不同源节点对目标节点的影响程度,并在边嵌入生成时引入残差学习机制。在两个公开网络攻击数据集上的实验结果表明,在二分类情况下,所提算法的总体性能优于E-GraphSAGE、LSTM、RNN、CNN算法;在多分类情况下,所提算法在大多数攻击类型上的F1值高于对比算法。
基金funded by the Science and Technology Project of State Grid Corporation of China(5108-202355437A-3-2-ZN).
文摘The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments.
基金supported by the Zhongyuan University of Technology Discipline Backbone Teacher Support Program Project(No.GG202417)the Key Research and Development Program of Henan under Grant 251111212000.
文摘Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.
基金Supported by National Natural Science Foundation of China (Grant No. 10671122) the first author is supported by Youth Foundation of Shanghai (Grant No. sdl10017) and also partly supported by Natural Science Foundation of Shanghai (Grant No. 10ZR1412500) the second author is partly supported by STCSM (Grant No. 09XD1402500)
文摘A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G* be the subgraph of G induced on the vertex set V(G) / {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G=Г(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G* has at least two connected components. We prove that the diameter of the induced graph G* is two if Z(R)2 ≠{0}, Z(R)3 = {0} and Gc is connected. We determine the structure of R which has two distinct nonadjacent vertices a, fl C Z(R)*/{c} such that the ideal [N(a)N(β)]{0} is generated by only one element of Z(R)*/{c}. We also completely determine the correspondence between commutative rings and finite complete graphs Kn with some end vertices adjacent to a single vertex of Kn.
文摘Let R be an associative ring with identity and Z^*(K)be its set of non-zero zero-divisors.The undirected zero-divisor graph of R、denoted byΓ(R),is the graph whose vert ices are the non-zero zero-divisors of R、and where two distinct verticesγand s are adjacent if and only ifγs=0 or sγ=0.The dist ance bet ween vertices a and b is the length of the shortest path connecting them,and the diameter of the graph,diam(Γ(R)),is the superimum of these distances.In this paper,first we prove some results aboutΓ(R)of a semi-commutative ring R.Then,for a reversible ring R and a unique product monoid M、we prove 0≦diam(Γ(R))<diam(Γ(R[M]))≦3.We describe all the possibilities for the pair diam(Γ(R))and diam(Γ(R[M])),strictly in terms of the properties of a ring R,where K is a reversible ring and M is a unique product monoid.Moreover,an example showing the necessity of our assumptions is provided.