The Industrial Internet of Things(IIoT)is increasingly vulnerable to sophisticated cyber threats,particularly zero-day attacks that exploit unknown vulnerabilities and evade traditional security measures.To address th...The Industrial Internet of Things(IIoT)is increasingly vulnerable to sophisticated cyber threats,particularly zero-day attacks that exploit unknown vulnerabilities and evade traditional security measures.To address this critical challenge,this paper proposes a dynamic defense framework named Zero-day-aware Stackelberg Game-based Multi-Agent Distributed Deep Deterministic Policy Gradient(ZSG-MAD3PG).The framework integrates Stackelberg game modeling with the Multi-Agent Distributed Deep Deterministic Policy Gradient(MAD3PG)algorithm and incorporates defensive deception(DD)strategies to achieve adaptive and efficient protection.While conventional methods typically incur considerable resource overhead and exhibit higher latency due to static or rigid defensive mechanisms,the proposed ZSG-MAD3PG framework mitigates these limitations through multi-stage game modeling and adaptive learning,enabling more efficient resource utilization and faster response times.The Stackelberg-based architecture allows defenders to dynamically optimize packet sampling strategies,while attackers adjust their tactics to reach rapid equilibrium.Furthermore,dynamic deception techniques reduce the time required for the concealment of attacks and the overall system burden.A lightweight behavioral fingerprinting detection mechanism further enhances real-time zero-day attack identification within industrial device clusters.ZSG-MAD3PG demonstrates higher true positive rates(TPR)and lower false alarm rates(FAR)compared to existing methods,while also achieving improved latency,resource efficiency,and stealth adaptability in IIoT zero-day defense scenarios.展开更多
Smart grid systems are advancing electrical services,making them more compatible with Internet of Things(IoT)technologies.The deployment of smart grids is facing many difficulties,requiring immediate solutions to enha...Smart grid systems are advancing electrical services,making them more compatible with Internet of Things(IoT)technologies.The deployment of smart grids is facing many difficulties,requiring immediate solutions to enhance their practicality.Data privacy and security are widely discussed,and many solutions are proposed in this area.Energy theft attacks by greedy customers are another difficulty demanding immediate solutions to decrease the economic losses caused by these attacks.The tremendous amount of data generated in smart grid systems is also considered a struggle in these systems,which is commonly solved via fog computing.This work proposes an energytheft detection method for smart grid systems employed in a fog-based network infrastructure.This work also proposes and analyzes Zero-day energy theft attack detection through a multi-layered approach.The detection process occurs at fog nodes via five machine-learning classification models.The performance of the classifiers is measured,validated,and reported for all models at fog nodes,as well as the required training and testing time.Finally,the measured results are compared to when the detection process occurs at a central processing unit(cloud server)to investigate and compare the performance metrics’goodness.The results show comparable accuracy,precision,recall,and F1-measure performance.Meanwhile,the measured execution time has decreased significantly in the case of the fog-based network infrastructure.The fog-based model achieved an accuracy and recall of 98%,F1 score of 99%,and reduced detection time up to around 85%compared to the cloud-based approach.展开更多
Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools.This study indicates that zero-day attacks have a significant impact on computer security.A conventional sign...Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools.This study indicates that zero-day attacks have a significant impact on computer security.A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks,as the signatures of zero-day attacks are usually not previously accessible.A machine learning(ML)-based detection algorithm is proficient in capturing statistical features of attacks and,therefore,optimistic for zero-day attack detection.ML and deep learning(DL)are employed for designing intrusion detection systems.The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS solutions that are dependent on datasets of prior signatures of the attacks.This manuscript presents the Zero-day attack detection employing an equilibrium optimizer with a deep learning(ZDAD-EODL)method to ensure cybersecurity.The ZDAD-EODL technique employs meta-heuristic feature subset selection using an optimum DL-based classification technique for zero-day attacks.Initially,the min-max scalar is utilized for normalizing the input data.For feature selection(FS),the ZDAD-EODL method utilizes the equilibrium optimizer(EO)model to choose feature sub-sets.In addition,the ZDAD-EODL technique employs the bi-directional gated recurrent unit(BiGRU)technique for the classification and identification of zero-day attacks.Finally,the detection performance of the BiGRU technique is further enhanced through the implementation of the subtraction average-based optimizer(SABO)-based tuning process.The performance of the ZDAD-EODL approach is investigated on the benchmark dataset.The comparison study of the ZDAD-EODL approach portrayed a superior accuracy value of 98.47%over existing techniques.展开更多
The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)an...The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg...The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.展开更多
Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resi...Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resistant to intentional or unintentional modification.Some of these features are important perceptual features according to the human visual system(HVS),which means that the embedded watermark should be imperceptible in these features.Therefore,both the designers of watermarking algorithms and potential attackers must consider these perceptual features when carrying out their actions.The two roles will be considered in this paper when designing a robust watermarking algorithm against the most harmful attacks,like volumetric scaling,histogram equalization,and non-conventional watermarking attacks like the Denoising Convolution Neural Network(DnCNN),which must be considered in watermarking algorithm design due to its rising role in the state-of-the-art attacks.The DnCNN is initialized and trained using watermarked image samples created by our proposed Covert and Severe Attacks Resistant Watermarking Algorithm(CSRWA)to prove its robustness.For this algorithm to satisfy the robustness and imperceptibility tradeoff,implementing the Dither Modulation(DM)algorithm is boosted by utilizing the Just Noticeable Distortion(JND)principle to get an improved performance in this sense.Sensitivity,luminance,inter and intra-block contrast are used to adjust the JND values.展开更多
Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Deg...Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.展开更多
The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an ...The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution.展开更多
To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid d...To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid dynamics(CFD)analysis.First,a CFD analysis of a two-bladed VAWT equipped with a NACA 0012 airfoil is conducted.The thrust and power coefficients are validated through experiments.Second,the blade force and velocity data at monitoring points are collected.The AOA at different azimuth angles is determined by removing the blade self-induction at the monitoring point.Then,the lift and drag coefficients as a function of AOA are extracted.Results show that this method is independent of the monitoring points selection located at certain distance to the blades and the extracted dynamic stall hysteresis is more precise than the one with the“usual”method without considering the self-induction from bound vortices.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther...As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.展开更多
This article proposes an innovative adversarial attack method,AMA(Adaptive Multimodal Attack),which introduces an adaptive feedback mechanism by dynamically adjusting the perturbation strength.Specifically,AMA adjusts...This article proposes an innovative adversarial attack method,AMA(Adaptive Multimodal Attack),which introduces an adaptive feedback mechanism by dynamically adjusting the perturbation strength.Specifically,AMA adjusts perturbation amplitude based on task complexity and optimizes the perturbation direction based on the gradient direction in real time to enhance attack efficiency.Experimental results demonstrate that AMA elevates attack success rates from approximately 78.95%to 89.56%on visual question answering and from78.82%to 84.96%on visual reasoning tasks across representative vision-language benchmarks.These findings demonstrate AMA’s superior attack efficiency and reveal the vulnerability of current visual language models to carefully crafted adversarial examples,underscoring the need to enhance their robustness.展开更多
This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional m...This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.展开更多
Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective ...Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective of differential-linear(DL)cryptanalysis.Specifically,we present an automated search for the DL distinguishers of Ballet based on MILP/MIQCP.For the versions with block sizes of 128 and 256 bits,we obtain 16 and 22 rounds distinguishers with estimated correlations of 2^(-59.89)and 2^(-116.80),both of which are the publicly longest distinguishers.In addition,this study incorporates the complexity information of key-recovery attacks into the automated model,to search for the optimal key-recovery attack structures based on DL distinguishers.As a result,we mount the key-recovery attacks on 16-round Ballet-128/128,17-round Ballet-128/256,and 21-round Ballet-256/256.The data/time complexities for these attacks are 2^(108.36)/2^(120.36),2^(115.90)/2^(192),and 2^(227.62)/2^(240.67),respectively.展开更多
To address the problem that existing studies lack analysis of the relationship between attack-defense game behaviors and situation evolution from the game perspective after constructing an attack-defense model,this pa...To address the problem that existing studies lack analysis of the relationship between attack-defense game behaviors and situation evolution from the game perspective after constructing an attack-defense model,this paper proposes a network attack-defense game model(ADGM).Firstly,based on the assumption of incomplete information between the two sides of the game,the ADGM model is established,and methods of payoff quantification,equilibrium solution,and determination of strategy confrontation results are presented.Then,drawing on infectious disease dynamics,the network attack-defense situation is defined based on the density of nodes in various security states,and the transition paths of network node security states are analyzed.Finally,the network zero-day virus attack-defense behaviors are analyzed,and comparative experiments on the attack-defense evolution trends under the scenarios of different strategy combinations,interference methods,and initial numbers are conducted using the NetLogo simulation tool.The experimental results indicate that this model can effectively analyze the evolution of the macro-level network attack-defense situation from the micro-level attack-defense behaviors.For instance,in the strategy selection experiment,when the attack success rate decreases from 0.49 to 0.29,the network destruction rate drops by 11.3%,in the active defense experiment,when the interference coefficient is reduced from 1 to 0.7,the network destruction rate decreases by 7%,and in the initial node number experiment,when the number of initially infected nodes increases from 10 to 30,the network destruction rate rises by 3%.展开更多
Diabetic foot attack(DFA)is the most severe presentation of diabetic foot disease,with the patient commonly displaying severe sepsis,which can be limb or life threatening.DFA can be classified into two main categories...Diabetic foot attack(DFA)is the most severe presentation of diabetic foot disease,with the patient commonly displaying severe sepsis,which can be limb or life threatening.DFA can be classified into two main categories:Typical and atypical.A typical DFA is secondary to a severe infection in the foot,often initiated by minor breaches in skin integrity that allow pathogens to enter and proliferate.This form often progresses rapidly due to the underlying diabetic pathophysiology of neuropathy,microvascular disease,and hyperglycemia,which facilitate infection spread and tissue necrosis.This form of DFA can present as one of a number of severe infective pathologies including pyomyositis,necrotizing fasciitis,and myonecrosis,all of which can lead to systemic sepsis and multiorgan failure.An atypical DFA,however,is not primarily infection-driven.It can occur secondary to either ischemia or Charcot arthropathy.Management of the typical DFA involves prompt diagnosis,aggressive infection control,and a multidisciplinary approach.Treatment can be guided by the current International Working Group on the Diabetic Foot/Infectious Diseases Society of America guidelines on diabetic foot infections,and the combined British Orthopaedic Foot and Ankle Society-Vascular Society guidelines.This article highlights the importance of early recognition,comprehensive management strategies,and the need for further research to establish standardized protocols and improve clinical outcomes for patients with DFA.展开更多
Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digita...Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digital rightsmanagement.ABE schemes rely on hard cryptographic assumptions such as pairings and others(pairingfree)to ensure their security against external and internal attacks.Internal attacks are carried out by authorized users who misuse their access to compromise security with potentially malicious intent.One common internal attack is the attribute collusion attack,in which users with different attribute keys collaborate to decrypt data they could not individually access.This paper focuses on the ciphertext-policy ABE(CP-ABE),a type of ABE where ciphertexts are produced with access policies.Our firstwork is to carry out the attribute collusion attack against several existing pairingfree CP-ABE schemes.As a main contribution,we introduce a novel attack,termed the anonymous key-leakage attack,concerning the context in which users could anonymously publish their secret keys associated with certain attributes on public platforms without the risk of detection.This kind of internal attack has not been defined or investigated in the literature.We then show that several prominent pairing-based CP-ABE schemes are vulnerable to this attack.We believe that this work will contribute to helping the community evaluate suitable CP-ABE schemes for secure deployment in real-life applications.展开更多
In recent work,adversarial stickers are widely used to attack face recognition(FR)systems in the physical world.However,it is difficult to evaluate the performance of physical attacks because of the lack of volunteers...In recent work,adversarial stickers are widely used to attack face recognition(FR)systems in the physical world.However,it is difficult to evaluate the performance of physical attacks because of the lack of volunteers in the experiment.In this paper,a simple attack method called incomplete physical adversarial attack(IPAA)is proposed to simulate physical attacks.Different from the process of physical attacks,when an IPAA is conducted,a photo of the adversarial sticker is embedded into a facial image as the input to attack FR systems,which can obtain results similar to those of physical attacks without inviting any volunteers.The results show that IPAA has a higher similarity with physical attacks than digital attacks,indicating that IPAA is able to evaluate the performance of physical attacks.IPAA is effective in quantitatively measuring the impact of the sticker location on the results of attacks.展开更多
Fault attacks have emerged as an increasingly effective approach for integrated circuit security attacks due to their short execution time and minimal data requirement.However,the lack of a unified leakage model remai...Fault attacks have emerged as an increasingly effective approach for integrated circuit security attacks due to their short execution time and minimal data requirement.However,the lack of a unified leakage model remains a critical challenge,as existing methods often rely on algorithm-specific details or prior knowledge of plaintexts and intermediate values.This paper proposes the Fault Probability Model based on Hamming Weight(FPHW)to address this.This novel statistical framework quantifies fault attacks by solely analyzing the statistical response of the target device,eliminating the need for attack algorithm details or implementation specifics.Building on this model,a Fault Injection Attack method based on Mutual Information(FPMIA)is introduced,which recovers keys by leveraging the mutual information between measured fault probability traces and simulated leakage derived from Hamming weight,reducing data requirements by at least 44%compared to the existing Mutual Information Analysis method while achieving a high correlation coefficient of 0.9403 between measured and modeled fault probabilities.Experimental validation on an AES-128 implementation via a Microcontroller Unit demonstrates that FPHW accurately captures the data dependence of fault probability and FPMIA achieves efficient key recovery with robust noise tolerance,establishing a unified and efficient framework that surpasses traditional methods in terms of generality,data efficiency,and practical applicability.展开更多
基金funded in part by the Humanities and Social Sciences Planning Foundation of Ministry of Education of China under Grant No.24YJAZH123National Undergraduate Innovation and Entrepreneurship Training Program of China under Grant No.202510347069the Huzhou Science and Technology Planning Foundation under Grant No.2023GZ04.
文摘The Industrial Internet of Things(IIoT)is increasingly vulnerable to sophisticated cyber threats,particularly zero-day attacks that exploit unknown vulnerabilities and evade traditional security measures.To address this critical challenge,this paper proposes a dynamic defense framework named Zero-day-aware Stackelberg Game-based Multi-Agent Distributed Deep Deterministic Policy Gradient(ZSG-MAD3PG).The framework integrates Stackelberg game modeling with the Multi-Agent Distributed Deep Deterministic Policy Gradient(MAD3PG)algorithm and incorporates defensive deception(DD)strategies to achieve adaptive and efficient protection.While conventional methods typically incur considerable resource overhead and exhibit higher latency due to static or rigid defensive mechanisms,the proposed ZSG-MAD3PG framework mitigates these limitations through multi-stage game modeling and adaptive learning,enabling more efficient resource utilization and faster response times.The Stackelberg-based architecture allows defenders to dynamically optimize packet sampling strategies,while attackers adjust their tactics to reach rapid equilibrium.Furthermore,dynamic deception techniques reduce the time required for the concealment of attacks and the overall system burden.A lightweight behavioral fingerprinting detection mechanism further enhances real-time zero-day attack identification within industrial device clusters.ZSG-MAD3PG demonstrates higher true positive rates(TPR)and lower false alarm rates(FAR)compared to existing methods,while also achieving improved latency,resource efficiency,and stealth adaptability in IIoT zero-day defense scenarios.
文摘Smart grid systems are advancing electrical services,making them more compatible with Internet of Things(IoT)technologies.The deployment of smart grids is facing many difficulties,requiring immediate solutions to enhance their practicality.Data privacy and security are widely discussed,and many solutions are proposed in this area.Energy theft attacks by greedy customers are another difficulty demanding immediate solutions to decrease the economic losses caused by these attacks.The tremendous amount of data generated in smart grid systems is also considered a struggle in these systems,which is commonly solved via fog computing.This work proposes an energytheft detection method for smart grid systems employed in a fog-based network infrastructure.This work also proposes and analyzes Zero-day energy theft attack detection through a multi-layered approach.The detection process occurs at fog nodes via five machine-learning classification models.The performance of the classifiers is measured,validated,and reported for all models at fog nodes,as well as the required training and testing time.Finally,the measured results are compared to when the detection process occurs at a central processing unit(cloud server)to investigate and compare the performance metrics’goodness.The results show comparable accuracy,precision,recall,and F1-measure performance.Meanwhile,the measured execution time has decreased significantly in the case of the fog-based network infrastructure.The fog-based model achieved an accuracy and recall of 98%,F1 score of 99%,and reduced detection time up to around 85%compared to the cloud-based approach.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/286/46Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R732),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+2 种基金Ongoing Research Funding program(ORFFT-2025-100-7),King Saud University,Riyadh,Saudi Arabia for financial supportthe Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-2913-07”the Deanship of Graduate Studies and Scientific Research at the University of Bisha for supporting this work through the Fast-Track Research Support Program。
文摘Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools.This study indicates that zero-day attacks have a significant impact on computer security.A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks,as the signatures of zero-day attacks are usually not previously accessible.A machine learning(ML)-based detection algorithm is proficient in capturing statistical features of attacks and,therefore,optimistic for zero-day attack detection.ML and deep learning(DL)are employed for designing intrusion detection systems.The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS solutions that are dependent on datasets of prior signatures of the attacks.This manuscript presents the Zero-day attack detection employing an equilibrium optimizer with a deep learning(ZDAD-EODL)method to ensure cybersecurity.The ZDAD-EODL technique employs meta-heuristic feature subset selection using an optimum DL-based classification technique for zero-day attacks.Initially,the min-max scalar is utilized for normalizing the input data.For feature selection(FS),the ZDAD-EODL method utilizes the equilibrium optimizer(EO)model to choose feature sub-sets.In addition,the ZDAD-EODL technique employs the bi-directional gated recurrent unit(BiGRU)technique for the classification and identification of zero-day attacks.Finally,the detection performance of the BiGRU technique is further enhanced through the implementation of the subtraction average-based optimizer(SABO)-based tuning process.The performance of the ZDAD-EODL approach is investigated on the benchmark dataset.The comparison study of the ZDAD-EODL approach portrayed a superior accuracy value of 98.47%over existing techniques.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2025R97)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of the Internet of Things(IoT)has introduced significant security challenges,with zero-day attacks emerging as one of the most critical and challenging threats.Traditional Machine Learning(ML)and Deep Learning(DL)techniques have demonstrated promising early detection capabilities.However,their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints,high computational costs,and the costly time-intensive process of data labeling.To address these challenges,this study proposes a Federated Learning(FL)framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in IoT networks.By employing Deep Neural Networks(DNNs)and decentralized model training,the approach reduces computational complexity while improving detection accuracy.The proposed model demonstrates robust performance,achieving accuracies of 94.34%,99.95%,and 87.94%on the publicly available kitsune,Bot-IoT,and UNSW-NB15 datasets,respectively.Furthermore,its ability to detect zero-day attacks is validated through evaluations on two additional benchmark datasets,TON-IoT and IoT-23,using a Deep Federated Learning(DFL)framework,underscoring the generalization and effectiveness of the model in heterogeneous and decentralized IoT environments.Experimental results demonstrate superior performance over existing methods,establishing the proposed framework as an efficient and scalable solution for IoT security.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金supported by Jiangsu Provincial Science and Technology Project,grant number J2023124.Jing Guo received this grant,the URLs of sponsors’website is https://kxjst.jiangsu.gov.cn/(accessed on 06 June 2024).
文摘The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.
文摘Watermarking is embedding visible or invisible data within media to verify its authenticity or protect copyright.The watermark is embedded in significant spatial or frequency features of the media to make it more resistant to intentional or unintentional modification.Some of these features are important perceptual features according to the human visual system(HVS),which means that the embedded watermark should be imperceptible in these features.Therefore,both the designers of watermarking algorithms and potential attackers must consider these perceptual features when carrying out their actions.The two roles will be considered in this paper when designing a robust watermarking algorithm against the most harmful attacks,like volumetric scaling,histogram equalization,and non-conventional watermarking attacks like the Denoising Convolution Neural Network(DnCNN),which must be considered in watermarking algorithm design due to its rising role in the state-of-the-art attacks.The DnCNN is initialized and trained using watermarked image samples created by our proposed Covert and Severe Attacks Resistant Watermarking Algorithm(CSRWA)to prove its robustness.For this algorithm to satisfy the robustness and imperceptibility tradeoff,implementing the Dither Modulation(DM)algorithm is boosted by utilizing the Just Noticeable Distortion(JND)principle to get an improved performance in this sense.Sensitivity,luminance,inter and intra-block contrast are used to adjust the JND values.
基金supported by the National Natural Science Foundation of China(Nos.12172315,12072304,11702232)the Fujian Provincial Natural Science Foundation,China(No.2021J01050)the Aeronautical Science Foundation of China(No.20220013068002).
文摘Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.
基金Funded by Chinese National Natural Science Foundation of China(No.U2006224)。
文摘The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution.
文摘To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid dynamics(CFD)analysis.First,a CFD analysis of a two-bladed VAWT equipped with a NACA 0012 airfoil is conducted.The thrust and power coefficients are validated through experiments.Second,the blade force and velocity data at monitoring points are collected.The AOA at different azimuth angles is determined by removing the blade self-induction at the monitoring point.Then,the lift and drag coefficients as a function of AOA are extracted.Results show that this method is independent of the monitoring points selection located at certain distance to the blades and the extracted dynamic stall hysteresis is more precise than the one with the“usual”method without considering the self-induction from bound vortices.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
基金supported by the Ministry of Trade,Industry and Energy(MOTIE)under Training Industrial Security Specialist for High-Tech Industry(RS-2024-00415520)supervised by the Korea Institute for Advancement of Technology(KIAT)the Ministry of Science and ICT(MSIT)under the ICT Challenge and Advanced Network of HRD(ICAN)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning&Evaluation(IITP).
文摘As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.
基金funded by the Natural Science Foundation of Jiangsu Province(Program BK20240699)National Natural Science Foundation of China(Program 62402228).
文摘This article proposes an innovative adversarial attack method,AMA(Adaptive Multimodal Attack),which introduces an adaptive feedback mechanism by dynamically adjusting the perturbation strength.Specifically,AMA adjusts perturbation amplitude based on task complexity and optimizes the perturbation direction based on the gradient direction in real time to enhance attack efficiency.Experimental results demonstrate that AMA elevates attack success rates from approximately 78.95%to 89.56%on visual question answering and from78.82%to 84.96%on visual reasoning tasks across representative vision-language benchmarks.These findings demonstrate AMA’s superior attack efficiency and reveal the vulnerability of current visual language models to carefully crafted adversarial examples,underscoring the need to enhance their robustness.
基金supported in part by Shanghai Rising-Star Program,China under grant 22QA1409400in part by National Natural Science Foundation of China under grant 62473287 and 62088101in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.
文摘This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.
基金National Natural Science Foundation of China(62272147,12471492,62072161,12401687)Shandong Provincial Natural Science Foundation(ZR2024QA205)+1 种基金Science and Technology on Communication Security Laboratory Foundation(6142103012207)Innovation Group Project of the Natural Science Foundation of Hubei Province of China(2023AFA021)。
文摘Ballet is one of the finalists of the block cipher project in the 2019 National Cryptographic Algorithm Design Competition.This study aims to conduct a comprehensive security evaluation of Ballet from the perspective of differential-linear(DL)cryptanalysis.Specifically,we present an automated search for the DL distinguishers of Ballet based on MILP/MIQCP.For the versions with block sizes of 128 and 256 bits,we obtain 16 and 22 rounds distinguishers with estimated correlations of 2^(-59.89)and 2^(-116.80),both of which are the publicly longest distinguishers.In addition,this study incorporates the complexity information of key-recovery attacks into the automated model,to search for the optimal key-recovery attack structures based on DL distinguishers.As a result,we mount the key-recovery attacks on 16-round Ballet-128/128,17-round Ballet-128/256,and 21-round Ballet-256/256.The data/time complexities for these attacks are 2^(108.36)/2^(120.36),2^(115.90)/2^(192),and 2^(227.62)/2^(240.67),respectively.
基金supported by the Major Science and Technology Programs in Henan Province(241100210100)the National Natural Science Foundation of China(62072416)+1 种基金the Key Research and Development Special Project of Henan Province(221111210500)the Project of Science and Technology in Henan Province(242102211068,232102210078).
文摘To address the problem that existing studies lack analysis of the relationship between attack-defense game behaviors and situation evolution from the game perspective after constructing an attack-defense model,this paper proposes a network attack-defense game model(ADGM).Firstly,based on the assumption of incomplete information between the two sides of the game,the ADGM model is established,and methods of payoff quantification,equilibrium solution,and determination of strategy confrontation results are presented.Then,drawing on infectious disease dynamics,the network attack-defense situation is defined based on the density of nodes in various security states,and the transition paths of network node security states are analyzed.Finally,the network zero-day virus attack-defense behaviors are analyzed,and comparative experiments on the attack-defense evolution trends under the scenarios of different strategy combinations,interference methods,and initial numbers are conducted using the NetLogo simulation tool.The experimental results indicate that this model can effectively analyze the evolution of the macro-level network attack-defense situation from the micro-level attack-defense behaviors.For instance,in the strategy selection experiment,when the attack success rate decreases from 0.49 to 0.29,the network destruction rate drops by 11.3%,in the active defense experiment,when the interference coefficient is reduced from 1 to 0.7,the network destruction rate decreases by 7%,and in the initial node number experiment,when the number of initially infected nodes increases from 10 to 30,the network destruction rate rises by 3%.
文摘Diabetic foot attack(DFA)is the most severe presentation of diabetic foot disease,with the patient commonly displaying severe sepsis,which can be limb or life threatening.DFA can be classified into two main categories:Typical and atypical.A typical DFA is secondary to a severe infection in the foot,often initiated by minor breaches in skin integrity that allow pathogens to enter and proliferate.This form often progresses rapidly due to the underlying diabetic pathophysiology of neuropathy,microvascular disease,and hyperglycemia,which facilitate infection spread and tissue necrosis.This form of DFA can present as one of a number of severe infective pathologies including pyomyositis,necrotizing fasciitis,and myonecrosis,all of which can lead to systemic sepsis and multiorgan failure.An atypical DFA,however,is not primarily infection-driven.It can occur secondary to either ischemia or Charcot arthropathy.Management of the typical DFA involves prompt diagnosis,aggressive infection control,and a multidisciplinary approach.Treatment can be guided by the current International Working Group on the Diabetic Foot/Infectious Diseases Society of America guidelines on diabetic foot infections,and the combined British Orthopaedic Foot and Ankle Society-Vascular Society guidelines.This article highlights the importance of early recognition,comprehensive management strategies,and the need for further research to establish standardized protocols and improve clinical outcomes for patients with DFA.
文摘Attribute-based encryption(ABE)is a cryptographic framework that provides flexible access control by allowing encryption based on user attributes.ABE is widely applied in cloud storage,file sharing,e-Health,and digital rightsmanagement.ABE schemes rely on hard cryptographic assumptions such as pairings and others(pairingfree)to ensure their security against external and internal attacks.Internal attacks are carried out by authorized users who misuse their access to compromise security with potentially malicious intent.One common internal attack is the attribute collusion attack,in which users with different attribute keys collaborate to decrypt data they could not individually access.This paper focuses on the ciphertext-policy ABE(CP-ABE),a type of ABE where ciphertexts are produced with access policies.Our firstwork is to carry out the attribute collusion attack against several existing pairingfree CP-ABE schemes.As a main contribution,we introduce a novel attack,termed the anonymous key-leakage attack,concerning the context in which users could anonymously publish their secret keys associated with certain attributes on public platforms without the risk of detection.This kind of internal attack has not been defined or investigated in the literature.We then show that several prominent pairing-based CP-ABE schemes are vulnerable to this attack.We believe that this work will contribute to helping the community evaluate suitable CP-ABE schemes for secure deployment in real-life applications.
文摘In recent work,adversarial stickers are widely used to attack face recognition(FR)systems in the physical world.However,it is difficult to evaluate the performance of physical attacks because of the lack of volunteers in the experiment.In this paper,a simple attack method called incomplete physical adversarial attack(IPAA)is proposed to simulate physical attacks.Different from the process of physical attacks,when an IPAA is conducted,a photo of the adversarial sticker is embedded into a facial image as the input to attack FR systems,which can obtain results similar to those of physical attacks without inviting any volunteers.The results show that IPAA has a higher similarity with physical attacks than digital attacks,indicating that IPAA is able to evaluate the performance of physical attacks.IPAA is effective in quantitatively measuring the impact of the sticker location on the results of attacks.
文摘Fault attacks have emerged as an increasingly effective approach for integrated circuit security attacks due to their short execution time and minimal data requirement.However,the lack of a unified leakage model remains a critical challenge,as existing methods often rely on algorithm-specific details or prior knowledge of plaintexts and intermediate values.This paper proposes the Fault Probability Model based on Hamming Weight(FPHW)to address this.This novel statistical framework quantifies fault attacks by solely analyzing the statistical response of the target device,eliminating the need for attack algorithm details or implementation specifics.Building on this model,a Fault Injection Attack method based on Mutual Information(FPMIA)is introduced,which recovers keys by leveraging the mutual information between measured fault probability traces and simulated leakage derived from Hamming weight,reducing data requirements by at least 44%compared to the existing Mutual Information Analysis method while achieving a high correlation coefficient of 0.9403 between measured and modeled fault probabilities.Experimental validation on an AES-128 implementation via a Microcontroller Unit demonstrates that FPHW accurately captures the data dependence of fault probability and FPMIA achieves efficient key recovery with robust noise tolerance,establishing a unified and efficient framework that surpasses traditional methods in terms of generality,data efficiency,and practical applicability.