期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel quasi-zero stiffness isolator with designable stiffness using cam-roller-spring-rod mechanism
1
作者 Yonglei Zhang Hao Wen +1 位作者 Haiyan Hu Dongping Jin 《Acta Mechanica Sinica》 2025年第6期158-170,共13页
Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving ... Quasi-zero stiffness(QZS)isolators have received considerable attention over the past years due to their outstanding vibration isolation performance in low-frequency bands.However,traditional mechanisms for achieving QZS suffer from low stiffness regions and significant nonlinear restoring forces with hardening characteristics,often struggling to withstand excitations with high amplitude.This paper presents a novel QZS vibration isolator that utilizes a more compact spring-rod mechanism(SRM)to provide primary negative stiffness.The nonlinearity of SRM is adjustable via altering the raceway of its spring-rod end,along with the compensatory force provided by the cam-roller mechanism so as to avoid complex nonlinear behaviors.The absolute zero stiffness can be achieved by a well-designed raceway curve with a concise mathematical expression.The nonlinear stiffness with softening properties can also be achieved by parameter adjustment.The study begins with the forcedisplacement relationship of the integrated mechanism first,followed by the design theory of the cam profile.The dynamic response and absolute displacement transmissibility of the isolation system are obtained based on the harmonic balance method.The experimental results show that the proposed vibration isolator maintains relatively low-dynamic stiffness even under non-ideal conditions,and exhibits enhanced vibration isolation performance compared to the corresponding linear isolator. 展开更多
关键词 Vibration isolation Quasi-zero stiffness Spring-rod mechanism Cam-roller mechanism Absolute zero stiffness
原文传递
Experimental Investigation of Nonlinear Vibration Isolator with Fluidic Actuators (NLVIFA)
2
作者 S.Sivakumar L.Jayakumar 《Sound & Vibration》 2019年第6期277-296,共20页
This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness(QZS).The existing model of QZS vibration isolator enhances amplitude of vibration an... This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness(QZS).The existing model of QZS vibration isolator enhances amplitude of vibration and attenuating vibration frequencies.This concern with displacement plays a vital role in the performance and instability of oblique spring setup reduces the isolator performance in horizontal non-nominal loads,in this accordance;this paper associates double acting hydraulic cylinder(fluidic actuators in short)in oblique and helical coil spring.An approximate expression of unique analytical relationship between the stiffness of vertical spring and bulk modulus of the fluid is derived for Quasi–Zero Stiffness Non-Linear Vibration Isolator with Fluidic Actuators(NLVIFA in short)system and the force transmissibility is formulated and damping ratio are discussed for characteristic analysis.Modal analysis carried out and compared with analytical results and an experimental prototype is developed and investigated.The performance of the NLVIFA reduces the external embarrassment more at low frequencies and the series of experimental studies showing that the soft nonlinearity causes limitation in the resonant frequency thereupon the isolation will be enhanced and NLVIFA greatly outperform some other type of nonlinear isolators. 展开更多
关键词 Quasi zero stiffness vibration nonlinear isolation fluidic actuator
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部