期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
Constructing graphite-CeO_(2)interfaces to enhance the photothermal activity for solar-driven dry reforming of methane
1
作者 LI Ruitao GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 北大核心 2025年第8期1137-1147,共11页
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra... CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency. 展开更多
关键词 dry reforming of methane photothermal catalysis CeO_(2) GRAPHITE INTERFACES
在线阅读 下载PDF
Highly dispersed Ni-O site on Ni catalysts for efficient and durable light-driven dry reforming of CH_(4) at ambient conditions
2
作者 Xia Gao Shuaikang Sang +6 位作者 Enquan Zhu Lihua Cai Chang Liu Ferdi Karadas Chao Zhang Jingxiang Low Yujie Xiong 《Chinese Journal of Structural Chemistry》 2025年第5期48-55,共8页
Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,t... Ni-based catalysts hold great potential in the light-driven dry reforming of methane(DRM)for syngas production due to their low cost and comparable catalytic performance to conventional noble-metal catalysts.However,the currently available Ni-based catalysts are confronted with low light-driven DRM efficiency and poor stability attributed to the coking.Herein,an atomically dispersed Ni-loaded CeO_(2)(Ni/CeO_(2))for light-drivenDRMis prepared by employing a polyol-mediated doping method to allow the high loading concentration of Ni on the CeO_(2),which overcomes the conventional atomically dispersed metal problem of low loading content.The atomically dispersed nature of the Ni can induce enormous CH4 activation sites for the reaction and photothermal effects for driving the reaction,while the CeO_(2) can facilitateCO_(2) activation.Therefore,the optimized atomically dispersed Ni-loaded CeO_(2) demonstrates an excellent light-drivenDRMperformance forH_(2)(626.5 mmol gcat^(-1) h^(-1))and CO(728.5 mmol gcat^(-1) h^(-1))production.More importantly,the optimized sample sustains its DRM performance after 100 h of continuous test,and such excellent stability of the presence of enormous Ni–O pairs can prevent the rapid conversion of CH_(x) intermediates into coke.This work demonstrates the meticulous design of non-noble metal catalysts for the lightdriven DRM with both high performance and stability. 展开更多
关键词 Photothermal catalysis Dry reforming of methane Stability Anticoking
原文传递
Regulating crystal phase of TiO_(2) to enhance catalytic activity of Ni/TiO_(2) for solar-driven dry reforming of methane 被引量:2
3
作者 HE Zhanjun GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第9期1203-1213,共11页
Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by... Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction. 展开更多
关键词 dry reforming of methane photothermal catalysis crystal phase TiO_(2) metal-support interaction
在线阅读 下载PDF
Machine learning-driven optimization of plasma-catalytic dry reforming of methane
4
作者 Yuxiang Cai Danhua Mei +2 位作者 Yanzhen Chen Annemie Bogaerts Xin Tu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期153-163,共11页
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz... This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes. 展开更多
关键词 Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production
在线阅读 下载PDF
Co particles separated by immiscible Ag on yttria-stabilized zirconia as durable methane dry reforming catalyst under pressurized conditions
5
作者 Shi-Ning Li Juntao Yao +7 位作者 Shuxin Pang Jing-Peng Zhang Shiying Li Zhicheng Liu Lu Han Weibin Fan Kake Zhu Yi-An Zhu 《Chinese Journal of Catalysis》 2025年第7期82-96,共15页
It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.He... It is economical to perform methane and carbon dioxide reforming(DRM)under industrially relevant high-pressure conditions,but the harsh operation condition poses a grand challenge for coke-resistant catalyst design.Here,we propose to boost the coke-tolerance of Co catalyst by applying a contact potential introduced by immiscible Ag clusters.We demonstrate that Co clusters separated by neighboring Ag on Yttria-stabilized zirconia(YSZ)support can serve as a coke-and sintering-resistant DRM catalyst under diluent gas-free,stoichiometric CH_(4) and CO_(2) feeding,1123 K and 20 bar.Since immiscible metals are ubiquitous and metal contact influences surface work function in general,this new design concept may have general implications for tailoring catalytic properties of metals. 展开更多
关键词 Methane dry reforming Carbon dioxide Heterogeneous catalysis CO AG
在线阅读 下载PDF
Rational designation of electromagnetic interface for low-temperature CO_(2) reforming CH_(4)
6
作者 Jin Chen Shuangyong Su +3 位作者 Chunqi Wang Hangyu Duan Zhen Xu Hongpeng Jia 《Journal of Environmental Sciences》 2025年第11期769-781,共13页
CO_(2) and CH_(4) as major causes of global warming could both be eliminated to produce syngas undermild conditions through dry reforming methane driven by electromagnetic induction heating(EMIH-controlled DRM).Using ... CO_(2) and CH_(4) as major causes of global warming could both be eliminated to produce syngas undermild conditions through dry reforming methane driven by electromagnetic induction heating(EMIH-controlled DRM).Using EMIH-configured characterization and density functional theory,it is shownthat the EMIH-induced negative electric field at the electromagnetic interface facilitates CO_(2) dissociation and atomic oxygen transfer,which is the source of the promoting effect of EMIH.By employing pure H2 in a one-step high-temperature reduction process,the interfacial effect between the NiMgAl compound and the Fe fiber could be improved,thereby increasing the influence of the EMIH-induced electric field.Consequently,the R-NiMgAl/Fe fiber catalyst with EMIH achieves about 90%conversions of CH_(4) and CO_(2) at 500℃,while traditional heating-driven DRM on R-NiMgAl requires 700℃ to accomplish the same result. 展开更多
关键词 Electromagnetic induction heating Dry reforming METHANE Carbon dioxide SYNGAS
原文传递
Interface engineering of oxygen-vacancy-rich MgO/Ni@NiAlO enables low-temperature coke-free methane dry reforming
7
作者 Qiuyue Wang Chenyu Yang +5 位作者 Shenggan Zhu Yuansen Zhang Xuan Wang Yongting Li Weiping Ding Xuefeng Guo 《Chinese Journal of Catalysis》 2025年第8期9-20,共12页
In the past decade,dry reforming of methane(DRM)has garnered increasing interest as it converts CH_(4)and CO_(2),two typical greenhouse gases,into synthesis gas(H_(2)and CO)for the production of high-value-added chemi... In the past decade,dry reforming of methane(DRM)has garnered increasing interest as it converts CH_(4)and CO_(2),two typical greenhouse gases,into synthesis gas(H_(2)and CO)for the production of high-value-added chemicals and fuels.Nickel-based DRM catalysts,renowned for their high activity and low cost,however,encounter challenges such as severe deactivation from sintering and carbon deposition.Herein,a surrounded NiO@NiAlO precursor derived from Ni(OH)_(2)nanosheets was modified at both the core and shell interfaces with MgO via wet impregnation.The obtained 0.8MgO^(WI)/Ni@NiAlO catalyst achieved a high CH_(4)reaction rate of~177 mmol gNi^(-1)min^(-1)and remained stable for 50 h at 600℃without coke formation.In sharp contrast,other Mg-doped catalysts(MgO modified the core or shell interfaces)and the catalyst without Mg-doping deactivated within 10 h due to coking or Ni particle sintering.The Ni/MgNiO_(2)interfaces and abundant oxygen vacancies(O_(v))generated by Mg-doping contributed to the outstanding resistance to sintering&coking as well as the superior activity and stability of the 0.8MgO^(WI)/Ni@NiAlO catalyst.In-situ investigation further unveiled the reaction mechanism:the activation of CO_(2)via adsorption on O_(v)generates active oxygen species(O^(*)),which reacts with CH_(x)^(*)intermediates formed by the dissociation of CH_(4)on Ni sites,yielding CO and H_(2).This work not only fabricates coke-free and high-stability Ni-based DRM catalysts via interface engineering but also provides insights and a new strategy for the design of high-efficiency and stable catalysts for DRM. 展开更多
关键词 Dry reforming of methane Ni-based catalyst Coke-free Oxygen vacancy Interface engineering
在线阅读 下载PDF
Iron-promoted zirconia-alumina supported Ni catalyst for highly efficient and cost-effective hydrogen production via dry reforming of methane
8
作者 Ahmed S.Al-Fatesh Naitik Patel +6 位作者 Vijay Kumar Srivastava Ahmed I.Osman David W.Rooney Anis H.Fakeeha Ahmed E.Abasaeed Mohammed F.Alotibi Rawesh Kumar 《Journal of Environmental Sciences》 2025年第2期274-282,共9页
Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina ... Developing cost-effective and high-performance catalyst systems for dry reforming of methane(DRM)is crucial for producing hydrogen(H_(2))sustainably.Herein,we investigate using iron(Fe)as a promoter and major alumina support in Ni-based catalysts to improve their DRM performance.The addition of iron as a promotor was found to add reducible iron species along with reducible NiO species,enhance the basicity and induce the deposition of oxidizable carbon.By incorporating 1 wt.%Fe into a 5Ni/10ZrAl catalyst,a higher CO_(2) interaction and formation of reducible"NiO-species having strong interaction with support"was observed,which led to an∼80%H_(2) yield in 420 min of Time on Stream(TOS).Further increasing the Fe content to 2 wt.%led to the formation of additional reducible iron oxide species and a noticeable rise in H_(2) yield up to 84%.Despite the severe weight loss on Fe-promoted catalysts,high H_(2) yield was maintained due to the proper balance between the rate of CH_(4) decomposition and the rate of carbon deposit diffusion.Finally,incorporating 3 wt.%Fe into the 5Ni/10ZrAl catalyst resulted in the highest CO_(2) interaction,wide presence of reducible NiO-species,minimumgraphitic deposit and an 87%H_(2) yield.Our findings suggest that ironpromoted zirconia-alumina-supported Ni catalysts can be a cheap and excellent catalytic system for H_(2) production via DRM. 展开更多
关键词 Dry reforming of methane Coke resistant Hydrogen production Cheap catalyst Fe-promoted catalyst
原文传递
Carbon diffusion mechanism as an effective stability enhancement strategy:The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane
9
作者 Dezheng Li Huimin Liu +3 位作者 Xuewen Xiao Manqi Zhao Dehua He Yiming Lei 《Chinese Journal of Catalysis》 2025年第3期399-409,共11页
Photothermal catalytic methane dry reforming(DRM)technology can convert greenhouse gases(i.e.CH_(4)and CO_(2))into syngas(i.e.H_(2)and CO),providing more opportunities for reducing the greenhouse effect and achieving ... Photothermal catalytic methane dry reforming(DRM)technology can convert greenhouse gases(i.e.CH_(4)and CO_(2))into syngas(i.e.H_(2)and CO),providing more opportunities for reducing the greenhouse effect and achieving carbon neutrality.In the DRM field,Ni-based catalysts attract wide attention due to their low cost and high activity.However,the carbon deposition over Ni-based catalysts always leads to rapid deactivation,which is still a main challenge.To improve the long-term stability of Ni-based catalysts,this work proposes a carbon-atom-diffusion strategy under photothermal conditions and investigates its effect on a Zn-doped Ni-based photothermal catalyst(Ni_(3)Zn@CeO_(2)).The photothermal catalytic behavior of Ni_(3)Zn@CeO_(2)can maintain more than 70 h in DRM reaction.And the photocatalytic DRM activity of Ni_(3)Zn@CeO_(2)is 1.2 times higher than thermal catalytic activity.Density functional theory(DFT)calculation and experimental characterizations indicate that Ni_(3)Zn promotes the diffusion of carbon atoms into the Ni_(3)Zn to form the Ni_(3)ZnC0.7 phase with body-centered cubic(bcc)structure,thus inhibiting carbon deposition.Further,in-situ diffuse reflectance infrared Fourier transform(DRIFT)spectroscopy and DFT calculation prove Ni_(3)Zn@CeO_(2)benefits the CH_(4)activation and inhibits the carbon deposition during the DRM process.Through inducing carbon atoms diffusion within the Ni_(3)Zn lattice,this work provides a straightforward and feasible strategy for achieving efficient photothermal catalytic DRM and even other CH_(4)conversion implementations with long-term stability. 展开更多
关键词 Photothermal catalysis Methane dry reforming Ni-based catalyst Stability enhancement Carbon atom diffusion
在线阅读 下载PDF
DFT-based activity and stability analysis of dry reforming of methane over Ni_(1)/CeO_(2):The critical role of crystal plane effect
10
作者 Li'nan Huang Lei Jiang +4 位作者 Dong Tian Yuelun Li Huicong Zuo Zhiqiang Li Kongzhai Li 《Journal of Rare Earths》 2025年第7期1421-1434,共14页
Energy shortages and global warming are driving the focus on the greenhouse gases CH_(4)and CO_(2).The main reason why dry reforming of methane(DRM)has yet to be industrialized is its catalytic tendency to deactivate ... Energy shortages and global warming are driving the focus on the greenhouse gases CH_(4)and CO_(2).The main reason why dry reforming of methane(DRM)has yet to be industrialized is its catalytic tendency to deactivate due to carbon deposition or sintering.Single-atom Ni/CeO_(2)catalysts with suitable metalsupport interactions may provide a new strategy for developing highly active and coking-resistant nickel-based catalysts.In this work,we investigated the properties of the catalytic models of singleatom Ni loaded on CeO_(2)(111),CeO_(2)(110)and CeO_(2)(100),as well as their catalytic DRM performance with the density functional theory method(DFT).The interaction of CeO_(2)with different low-index crystal planes and single-atom Ni can be explained by the anchoring effect of surface O ions on Ni.Adsorption energies,growth patterns of Ni clusters,and migration studies of Ni atoms all indicate that the CeO_(2)(100)surface has the strongest anchoring effect on isolated Ni atoms,followed by the CeO_(2)(110)surface,with the CeO_(2)(111)surface being the weakest,Methane activation studies have shown that the activation ability of Ni_(1)/CeO_(2)(110)for methane strongly depends on the coordination environment of Ni,By contrast,methane activation by Ni on Ni_(1)/CeO_(2)(111)exhibits better activity and stability.Moreover,the Ni—CeO_(2)interaction correlates well with the DRM reaction performance.Interactions that are too strong anchor Ni atoms well but are not optimal for DRM activity.Ni_(1)/CeO_(2)(110)has relatively moderate interactions,promotes the^(*)CH_(4)→^(*)CH process,and has good resistance to carbon deposition.The metalsupport interaction-DRM reactivity(or stability)relationship is vital for the design of"super"highactivity and high-stability DRM catalysts. 展开更多
关键词 Ni_(1)/CeO_(2) Dry reforming of methane Crystal effects Metal-support interactions Density functional theory Rare earths
原文传递
Regulating the oxygen vacancies in Ni-Ce_(x)Zr_(1-x)O_(2)/ZSM-5 to improve the long-term stability for dry reforming of methane
11
作者 Zhuwei Yang Linsen Li +8 位作者 Yijie Lin Xinyuan Tao Xiao Liu Lei Chen Ming Ma Li Lin Riguang Zhang Jiayuan Li Zhao Jiang 《Chinese Journal of Structural Chemistry》 2025年第8期55-70,共16页
Dry reforming of methane(DRM)has gained significant attention as a promising route to convert two major greenhouse gases(CO_(2) and CH4)to syngas.The development of efficient catalysts is critical for the engineering ... Dry reforming of methane(DRM)has gained significant attention as a promising route to convert two major greenhouse gases(CO_(2) and CH4)to syngas.The development of efficient catalysts is critical for the engineering applications.In this study,the Ce_(x)Zr_(1-x)O_(2)/ZSM-5 composites with different oxygen vacancy concentrations were synthesized by tuning the Ce/Zr ratio,followed by the deposition of metal Ni to island-like Ce_(x)Zr_(1-x)O_(2)on ZSM-5,forming a variety of Ni-Ce_(x)Zr_(1-x)O_(2)/ZSM-5 catalysts,which were applied for the DRM reaction under 750◦C.Combined with various characterizations,it was found that the oxygen vacancy concentration illustrated the volcanic tendency with the decreased Ce/Zr ratio,and the interaction between metal Ni and Ce_(x)Zr_(1-x)O_(2)exhibited a positive relationship with oxygen vacancy concentration.The enhanced between Ni and Ce_(x)Zr_(1-x)O_(2)interaction could improve the strength and amount of Ni-O-M(M=Ce/Zr)species,making the d-band centers of catalysts closer to the Fermi energy level,which was beneficial to the CH4 and CO_(2) activation,along with the improved capacity to resist sintering and coking.Especially,the C1Z3(Ni-Ce0.25Zr0.75O_(2)/ZSM-5)catalyst with the Ce/Zr ratio of 1/3 demonstrated the optimal catalytic performance with 91.9%CH4 and 93.8%CO_(2) conversions within 50 h,accompanied by the best structural and catalytic stability after 100 h.In-situ DRIFTS was employed to study the reaction path and mechanism,discovering that significant amounts of strengthened Ni-O-M species were conducive to activating adsorbed CH4 and CO_(2),and desorbing the linear CO species. 展开更多
关键词 NI Ce_(x)Zr_(1-x)O_(2) ZSM-5 Dry reforming of methane Oxygen vacancy
原文传递
Hydrogen production from dry reforming of methane,using CO_(2)previously chemisorbed in the Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution
12
作者 Yocelin B.González-González Fernando Plascencia-Hernández +1 位作者 Rubén Mendoza-Cruz Heriberto Pfeiffer 《Journal of Environmental Sciences》 2025年第3期535-550,共16页
Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)ca... Li_(6)ZnO_(4)was chemically modified by nickel addition,in order to develop different compositions of the solid solution Li_(6)Zn_(1-x)Ni_(x)O_(4).These materials were evaluated bifunctionally;analyzing their CO_(2)capture performances,aswell as on their catalytic properties for H_(2)production via dry reforming of methane(DRM).The crystal structures of Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples were determined through X-ray diffraction,which confirmed the integration of nickel ions up to a concentration around 20 mol%,meanwhile beyond this value,a secondary phase was detected.These results were supported by XPS and TEM analyses.Then,dynamic and isothermal thermogravimetric analyses of CO_(2)capture revealed that Li_(6)Zn_(1-x)Ni_(x)O_(4)solid solution samples exhibited good CO_(2)chemisorption efficiencies,similarly to the pristine Li_(6)ZnO_(4)chemisorption trends observed.Moreover,a kinetic analysis of CO_(2)isothermal chemisorptions,using the Avrami-Erofeev model,evidenced an increment of the constant rates as a function of the Ni content.Since Ni^(2+)ions incorporation did not reduce the CO_(2)capture efficiency and kinetics,the catalytic properties of thesematerialswere evaluated in the DRM process.Results demonstrated that nickel ions favored hydrogen(H_(2))production over the pristine Li_(6)ZnO_(4)phase,despite a second H2 production reaction was determined,methane decomposition.Thereby,Li_(6)Zn_(1-x)Ni_(x)O_(4)ceramics can be employed as bifunctional materials. 展开更多
关键词 Dry reforming of methane(DRM) CO_(2)chemisorption H_(2)production Solid solution Li_(6)ZnO_(4)
原文传递
Efficient solar-driven CO_(2)-to-fuel conversion via Ni/MgAlO_(x)@SiO_(2)nanocomposites at low temperature 被引量:1
13
作者 Xianglei Liu Yueyue Ling +8 位作者 Chen Sun Hang Shi Hangbin Zheng Chao Song Ke Gao Chunzhuo Dang Nan Sun Yimin Xuan Yulong Ding 《Fundamental Research》 CAS CSCD 2024年第1期131-139,共9页
Solar-driven CO_(2)-to-fuel conversion assisted by another major greenhouse gas CH_(4)is promising to concurrently tackle energy shortage and global warming problems.However,current techniques still suffer from drawba... Solar-driven CO_(2)-to-fuel conversion assisted by another major greenhouse gas CH_(4)is promising to concurrently tackle energy shortage and global warming problems.However,current techniques still suffer from drawbacks of low efficiency,poor stability,and low selectivity.Here,a novel nanocomposite composed of interconnected Ni/MgAlOx nanoflakes grown on SiO_(2)particles with excellent spatial confinement of active sites is proposed for direct solar-driven CO_(2)-to-fuel conversion.An ultrahigh light-to-fuel efficiency up to 35.7%,high production rates of H_(2)(136.6 mmol min^(-1)g^(-1))and CO(148.2 mmol min^(-1)g^(-1)),excellent selectivity(H_(2)/CO ratio of 0.92),and good stability are reported simultaneously.These outstanding performances are attributed to strong metal-support interactions,improved CO_(2)absorption and activation,and decreased apparent activation energy under direct light illumination.MgAlO_(x)@SiO_(2)support helps to lower the activation energy of CH^(*) oxidation to CHO^(*) and improve the dissociation of CH_(4)to CH_(3)^(*) as confirmed by DFT calculations.Moreover,the lattice oxygen of MgAlO_(x) participates in the reaction and contributes to the removal of carbon deposition.This work provides promising routes for the conversion of greenhouse gasses into industrially valuable syngas with high efficiency,high selectivity,and benign sustainability. 展开更多
关键词 Solar fuel CO_(2)reduction Dry reforming of methane Photothermocatalysis Stability
原文传递
Nickel-based cerium zirconate inorganic complex structures for CO_(2)valorisation via dry reforming of methane
14
作者 Juan Luis Martín-Espejo Loukia-Pantzechroula Merkouri +3 位作者 Jesús Gándara-Loe José Antonio Odriozola Tomas Ramirez Reina Laura Pastor-Pérez 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期12-23,共12页
The increasing anthropogenic emissions of greenhouse gases(GHG)is encouraging extensive research in CO_(2)utilisation.Dry reforming of methane(DRM)depicts a viable strategy to convert both CO_(2)and CH4into syngas,a w... The increasing anthropogenic emissions of greenhouse gases(GHG)is encouraging extensive research in CO_(2)utilisation.Dry reforming of methane(DRM)depicts a viable strategy to convert both CO_(2)and CH4into syngas,a worthwhile chemical intermediate.Among the different active phases for DRM,the use of nickel as catalyst is economically favourable,but typically deactivates due to sintering and carbon deposition.The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts.XRD and TPR-H2analyses confirmed the existence of different phases according to the Ni loading in these materials.Besides,superficial Ni is observed as well as the existence of a CeNiO_(3)perovskite structure.The catalytic activity was tested,proving that 10 wt.%Ni loading is the optimum which maximises conversion.This catalyst was also tested in long-term stability experiments at 600and 800℃in order to study the potential deactivation issues at two different temperatures.At 600℃,carbon formation is the main cause of catalytic deactivation,whereas a robust stability is shown at 800℃,observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO_(2)and biogas mixtures upgrading catalysts. 展开更多
关键词 CO_(2)conversion Dry reforming of methane Nickel catalysts PYROCHLORE Cerium zirconate
原文传递
Tar formation characteristic of integrated process of coal pyrolysis with dry reforming of low carbon alkane over Ni/La_(2)O_(3)-ZrO_(2)
15
作者 LÜJiannan LI Yang +1 位作者 JIN Lijun HU Haoquan 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第12期1823-1833,I0001-I0006,共17页
Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition... Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA. 展开更多
关键词 coal pyrolysis dry reforming low carbon alkane Ni/La_(2)O_(3)-ZrO_(2) TAR
在线阅读 下载PDF
Performance of a Combined Energy System Consisting of Solar Collector, Biogas Dry Reforming and Solid Oxide Fuel Cell: An Indian Case Study
16
作者 Akira Nishimura Ryotaro Sato +1 位作者 Ryota Nakajima Eric Hu 《Smart Grid and Renewable Energy》 2024年第10期217-247,共31页
An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of cli... An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of climate conditions on the performance of solar collectors with different lengths of parabolic trough solar collector (dx) and mass flow rate of heat transfer fluid (m). In addition, this study has evaluated the amount of H2 produced by biogas dry reforming (GH2), the amount of power generated by SOFC (PSOFC) and the maximum number of possible households (N) whose electricity demand could be met by the energy system proposed, considering the performance of solar collector with the different dx and m. As a result, the optimum dx was found to be 4 m. This study revealed that the temperature of heat transfer fluid (Tfb) decreased with the increase in m. Tfb in March, April and May was higher than that in other months, while Tfb from June to December was the lowest. GH2, PSOFC and N in March, April and May were higher than those in other months, irrespective of m. The optimum m was 0.030 kg/s. 展开更多
关键词 Solar Collector Temperature of Simulated Biogas Case Study of Installation in India H2 Production by Dry reforming Power Generated by SOFC
在线阅读 下载PDF
零基预算的增量现实 被引量:2
17
作者 张平 苟燕楠 《财政科学》 2025年第3期34-52,共19页
本文探讨了零基预算与增量预算的优缺点及其在政府治理改革中的协同作用,特别强调了零基预算的“增量现实”特点。零基预算理论上通过从零开始评估所有项目和支出,打破传统基数预算模式,优化资源配置,提高资金使用效率。然而,在实践中,... 本文探讨了零基预算与增量预算的优缺点及其在政府治理改革中的协同作用,特别强调了零基预算的“增量现实”特点。零基预算理论上通过从零开始评估所有项目和支出,打破传统基数预算模式,优化资源配置,提高资金使用效率。然而,在实践中,零基预算面临诸多挑战,如成本收益分析困难、政治因素干扰等。文章指出,零基预算与增量预算并非完全对立,而是可以相互补充。通过部分实施零基预算和动态调整两种模式的比重,可以充分发挥两者的优势,提高预算编制的科学性和合理性。零基预算改革不仅是财政领域的技术改革,更是政府治理改革的重要组成部分,其成功与否取决于国家治理能力、经济社会发展阶段等多方面因素。 展开更多
关键词 零基预算 增量预算 政府治理改革 预算优化
在线阅读 下载PDF
健全现代预算制度的理论分析与实践思考 被引量:1
18
作者 马蔡琛 唐卓越 《财政科学》 2025年第1期72-79,共8页
党的二十届三中全会提出健全预算制度的要求,明确了现代预算制度改革的方向。健全预算制度不仅依赖于制度设计的完善,更需在实践中不断探索创新。建议从资金管理、主体维度增强预算制度的完整性,深化零基预算改革、强化事前功能评估、... 党的二十届三中全会提出健全预算制度的要求,明确了现代预算制度改革的方向。健全预算制度不仅依赖于制度设计的完善,更需在实践中不断探索创新。建议从资金管理、主体维度增强预算制度的完整性,深化零基预算改革、强化事前功能评估、完善跨部门预算绩效考察制度、推动年度预算与中期财政规划衔接以提高预算制度的有效性,建立分类规范的预算信息公开制度和权责发生制政府综合财务报告制度以保证预算制度的透明度,从而在实践中不断健全统筹有力、科学高效、规范透明的现代预算制度。 展开更多
关键词 现代预算制度 财税体制改革 零基预算 中期财政规划
在线阅读 下载PDF
Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane 被引量:7
19
作者 李伟作 赵忠奎 +1 位作者 焦艳华 王桂茹 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2122-2133,共12页
An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydr... An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction. 展开更多
关键词 Ni-based catalystZrO2 supportHierarchical structure Morphology effect Dry reforming of methane Synthesis gas Coke resistance
在线阅读 下载PDF
零碳园区电力供给侧改革政策设计与应用模式研究 被引量:1
20
作者 陈东波 杨晨 +4 位作者 卢琬莹 程志寅 严坤 陈亚林 陈吕军 《中国环境管理》 2025年第5期16-26,共11页
零碳园区必须构建以可再生能源为主、辅以共享储能并由公共电网兜底的能源体系,才能保证园区全生命周期碳中和的实现。其中,绿色电力供给是能源体系的关键。本文从问题导向出发,揭示了零碳能源供给与园区能源需求存在的深层次矛盾,论述... 零碳园区必须构建以可再生能源为主、辅以共享储能并由公共电网兜底的能源体系,才能保证园区全生命周期碳中和的实现。其中,绿色电力供给是能源体系的关键。本文从问题导向出发,揭示了零碳能源供给与园区能源需求存在的深层次矛盾,论述了零碳园区建设的导向及其能源体系要求,以及零碳园区与电力供给侧改革的关系,全面阐述了基于零碳园区建设的电力供给侧改革政策设计目标与政策机制设计,提出以零碳园区建设激发电力供给侧改革活力。系统勾画了电力供给侧改革政策绿色设计蓝图,包括多方参与收益共享机制、绿电直连+公共电网兜底机制、碳电协同交易机制、容量补偿机制、绿电互济机制、独立计价机制、区域及跨部门协同机制、投融资与财政政策绿色设计等八大机制,并以零碳园区为试验田,详细剖析了零碳园区电力供给侧改革典型应用模式,涵盖园区及周边可再生能源开发利用型、绿电直连型、隔墙售电型、增量配电网型、共享储能型等五大类型。着力实现由低价能源向低碳能源、从技术依赖向协同优化、由单一主体向多元主体共治等三大转变,致力达成碳平衡、电量平衡、电价平衡等三大平衡。 展开更多
关键词 零碳园区 电力供给侧改革 政策设计 应用模式
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部