When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o...When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.展开更多
To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design...To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.展开更多
Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase erro...Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.展开更多
Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this ...Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.展开更多
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ...Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.展开更多
In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial rob...In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial robot,which has six degree of freedom(6-DOF).The whole adaptive force control algorithm is implemented on TMS320C30 micro-processor whose instruction cycle is 60ns.The results of the force control experiments prove that AZPEF force control makes robot have good robustness and quick response ability.展开更多
The Zr(0.5)Hf(0.5)VPO7 is successfully synthesized by the solid-state method with near-zero thermal expansion. Powder x-ray diffraction(XRD), Raman spectroscopy, thermal dilatometry, and scanning electron micros...The Zr(0.5)Hf(0.5)VPO7 is successfully synthesized by the solid-state method with near-zero thermal expansion. Powder x-ray diffraction(XRD), Raman spectroscopy, thermal dilatometry, and scanning electron microscopy(SEM) are used to investigate the structure, the phase transition, and the coefficient of thermal expansion(CTE) of Zr(0.5)Hf(0.5)VPO7. The investigation results show that the samples are of the single cubic type with a space group of Pa3ˉ at room temperature(RT).It can be inferred that the superstructure is transformed from the 3 × 3 × 3 superstructure to the 1 × 1 × 1 ideal crystal in a temperature range between 310 K and 323 K. The CTE is measured by a dilatometer to be 0.59 × 10^(-6) K^(-1)(310 K–673 K). The values of intrinsic(XRD) and extrinsic(dilatometric) thermal expansion are both near zero. The results show that Zr(0.5)Hf(0.5)VPO7 has near-zero thermal expansion behavior over a wide temperature range.展开更多
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero...In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.展开更多
At zero temperature, based on the Ising model, the phase transition in a two-dimensional square lattice is studied using the generalized zero-temperature Glauber dynamics. Using Monte Carlo (MC) renormalization grou...At zero temperature, based on the Ising model, the phase transition in a two-dimensional square lattice is studied using the generalized zero-temperature Glauber dynamics. Using Monte Carlo (MC) renormalization group methods, the static critical exponents and the dynamic exponent are studied; the type of phase transition is found to be of the first order.展开更多
为提高单相动态电压恢复器(dynamic voltage restorer,DVR)的补偿性能,提出一种基于等效基波及奇次谐波谐振器组的数字控制方法。采用可等效为一组谐振器的延时模块,能够有效抑制电网基波和谐波扰动。给出一种包含两个控制参数和一组...为提高单相动态电压恢复器(dynamic voltage restorer,DVR)的补偿性能,提出一种基于等效基波及奇次谐波谐振器组的数字控制方法。采用可等效为一组谐振器的延时模块,能够有效抑制电网基波和谐波扰动。给出一种包含两个控制参数和一组零相移陷波滤波器的结构及其设计方法,使系统在保证稳定性的同时,获得较大的谐振增益。其中,延时环节衰减系数可增加谐振器组鲁棒性;控制器比例增益可解决零相移陷波器中使用延时带来的问题;零相移陷波器组既能对消LC谐振峰,也能解决等效谐振器组高增益在高频处的稳定性问题。同时,引入电源电压和负载电流双前馈来保证响应速度,增加了对扰动的抑制能力。所提控制策略结构简单,谐波补偿能力强,动态响应快,易于实现。在2kW单相DVR实验装置上的实验结果验证了该控制方法的正确性。展开更多
In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter u...In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.展开更多
We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain su...We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain superconducting pairing.One topological class is the class BDI characterized by the Z index,and the other is the class D characterized by the Z;index.For the two different topological classes,the topological phase diagrams of the system are presented by calculating two different topological numbers,i.e.,the Z index winding number W and the Z;index Majorana number M,respectively.In the case of θ=0,the topological class belongs to the class BDI,multiple topological phase transitions accompanying the variation of the number of Majorana zero modes are observed.In the case of θ = π/2 it belongs to the class D.Our results show that for the given value of dimerization,the topologically nontrivial and trivial phases alternate with the variation of chemical potential.展开更多
Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). N...Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). Near-atomic resolution elemental mappings of Cr(Ⅵ)–Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(Ⅵ) encapsulation are strongly dependent on the initial concentration of Cr(Ⅵ) in solution. Low Cr loading in nZⅥ(〈1.0 wt%) promotes the electrochemical oxidation and continuous corrosion of n ZⅥ while high Cr loading(〉1.0 wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(Ⅵ)(e.g., 〈 10 mg/L). Whereas the reacted n ZⅥ is quickly coated with a newly-formed layer of 2–4 nm in the presence of concentrated Cr(Ⅵ)(e.g., 〉 100 mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy(XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxides with Cr(Ⅵ) adsorbed on the outside surface. The insoluble and insulating Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxide layer can completely cover the n ZⅥ surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZⅥ in high Cr(Ⅵ) solution is detrimental to the performance of nZⅥ for Cr(Ⅵ) treatment and remediation.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 71271078)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z414)Integration of Industry, Education and Research of Guangdong Province, and Ministry of Education of China (Grant No. 2009B090300312)
文摘When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion.
基金This project was supported by the Aeronautics Foundation of China (00E51022).
文摘To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.
基金This project is supported by Aeronautics Foundation of China (No.00- E51022).
文摘Flight simulator is an important device and a typical high performanceposition servo system used in the hardware-in-the-loop simulation of flight control system. Withoutusing the future desired output, zero phase error controller makes the overall system's frequencyresponse exhibit zero phase shift for all frequencies and a very small gain error at low frequencyrange can be achieved. A new algorithm to design the feed forward controller is presented, in orderto reduce the phase error, the design of proposed feed forward controller uses a modified plantmodel, which is a closed loop transfer function, through which the system tracking precisionperformance can be improved greatly. Real-time control results show the effectiveness of theproposed approach in flight simulator servo system.
文摘Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.
基金The project was supported by Aeronautics Foundation of China (00E51022).
文摘Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.
文摘In order to remove the time delay between the input and the output signals of a robot force control system,adaptive zero phase error feedforward(AZPEF)control method is presented and applied to PUMA 560 industrial robot,which has six degree of freedom(6-DOF).The whole adaptive force control algorithm is implemented on TMS320C30 micro-processor whose instruction cycle is 60ns.The results of the force control experiments prove that AZPEF force control makes robot have good robustness and quick response ability.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574276,U173112,and 41401384)the Project of Shandong Provincial Higher Educational Science and Technology Program,China(Grant No.J17KB127)+1 种基金the Science and Technology Development Plans of Binzhou City,China(Grant Nos.2014ZC0307 and 2015ZC0210)Binzhou University Research Fund Project,China(Grant Nos.BZXYG1513 and BZXYG1706)
文摘The Zr(0.5)Hf(0.5)VPO7 is successfully synthesized by the solid-state method with near-zero thermal expansion. Powder x-ray diffraction(XRD), Raman spectroscopy, thermal dilatometry, and scanning electron microscopy(SEM) are used to investigate the structure, the phase transition, and the coefficient of thermal expansion(CTE) of Zr(0.5)Hf(0.5)VPO7. The investigation results show that the samples are of the single cubic type with a space group of Pa3ˉ at room temperature(RT).It can be inferred that the superstructure is transformed from the 3 × 3 × 3 superstructure to the 1 × 1 × 1 ideal crystal in a temperature range between 310 K and 323 K. The CTE is measured by a dilatometer to be 0.59 × 10^(-6) K^(-1)(310 K–673 K). The values of intrinsic(XRD) and extrinsic(dilatometric) thermal expansion are both near zero. The results show that Zr(0.5)Hf(0.5)VPO7 has near-zero thermal expansion behavior over a wide temperature range.
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274379)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.14XNLQ07)
文摘In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.
文摘At zero temperature, based on the Ising model, the phase transition in a two-dimensional square lattice is studied using the generalized zero-temperature Glauber dynamics. Using Monte Carlo (MC) renormalization group methods, the static critical exponents and the dynamic exponent are studied; the type of phase transition is found to be of the first order.
文摘为提高单相动态电压恢复器(dynamic voltage restorer,DVR)的补偿性能,提出一种基于等效基波及奇次谐波谐振器组的数字控制方法。采用可等效为一组谐振器的延时模块,能够有效抑制电网基波和谐波扰动。给出一种包含两个控制参数和一组零相移陷波滤波器的结构及其设计方法,使系统在保证稳定性的同时,获得较大的谐振增益。其中,延时环节衰减系数可增加谐振器组鲁棒性;控制器比例增益可解决零相移陷波器中使用延时带来的问题;零相移陷波器组既能对消LC谐振峰,也能解决等效谐振器组高增益在高频处的稳定性问题。同时,引入电源电压和负载电流双前馈来保证响应速度,增加了对扰动的抑制能力。所提控制策略结构简单,谐波补偿能力强,动态响应快,易于实现。在2kW单相DVR实验装置上的实验结果验证了该控制方法的正确性。
文摘In this paper, on the basis of the phase shifted controlled zero voltage switch (ZVS) full bridge converter with pulse width modulation (PWM), a novel zero voltage and zero current switch (ZVZCS) PWM converter using a simple auxiliary circuit was designed. The ZVZCS soft switch is achieved by the resonance among the resisting electromagnetic deflection capacitor, the capacitor of the simple auxiliary network and the leakage inductor of transformer. There are no dissipation devices of the saturation inductor and the auxiliary switch in the converter, meantime the capacitor of the auxiliary circuit is also used to clamp the voltage of the rectifier, and there is no additional clamped circuit. There is no big circulating current in the converter, all the active and passive devices work on the condition of the low current and voltage stress, and the proposed converter has wide load range and small duty loss.
基金supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the topological properties of a ladder model of the dimerized Kitaev superconductor chains.The topological class of the system is determined by the relative phase θ between the inter-and intra-chain superconducting pairing.One topological class is the class BDI characterized by the Z index,and the other is the class D characterized by the Z;index.For the two different topological classes,the topological phase diagrams of the system are presented by calculating two different topological numbers,i.e.,the Z index winding number W and the Z;index Majorana number M,respectively.In the case of θ=0,the topological class belongs to the class BDI,multiple topological phase transitions accompanying the variation of the number of Majorana zero modes are observed.In the case of θ = π/2 it belongs to the class D.Our results show that for the given value of dimerization,the topologically nontrivial and trivial phases alternate with the variation of chemical potential.
基金supported by the National Natural Science Foundation of China(Nos.21677107,51578398)the Fundamental Research Funds for the Central Universities(No.0400219363)
文摘Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). Near-atomic resolution elemental mappings of Cr(Ⅵ)–Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(Ⅵ) encapsulation are strongly dependent on the initial concentration of Cr(Ⅵ) in solution. Low Cr loading in nZⅥ(〈1.0 wt%) promotes the electrochemical oxidation and continuous corrosion of n ZⅥ while high Cr loading(〉1.0 wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(Ⅵ)(e.g., 〈 10 mg/L). Whereas the reacted n ZⅥ is quickly coated with a newly-formed layer of 2–4 nm in the presence of concentrated Cr(Ⅵ)(e.g., 〉 100 mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy(XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxides with Cr(Ⅵ) adsorbed on the outside surface. The insoluble and insulating Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxide layer can completely cover the n ZⅥ surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZⅥ in high Cr(Ⅵ) solution is detrimental to the performance of nZⅥ for Cr(Ⅵ) treatment and remediation.