A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance th...As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance than the rest of the consensus algorithms,and it does not cause problems such as the concentrated hashing power,resource waste and fork.However,Raft can only be used in a non-byzantine environment with a small network size.In order to enable Raft to be used in a large-scale network with a certain number of byzantine nodes,this paper combines Raft and credit model to propose a Raft blockchain consensus algorithm based on credit model CRaft.In the node credit evaluation phase,RBF-based support vector machine is used as the anomaly detection method,and the node credit evaluation model is constructed.Then the Trust Nodes List(TNL)mechanism is introduced to make the consensus phase in a creditable network environment.Finally,the common node is synchronized to the consensus node to update the blockchain of the entire network.Experiments show that CRaft has better throughput and lower latency than the commonly used consortium blockchain consensus algorithm PBFT(Practical Byzantine Fault Tolerance).展开更多
The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and secu...The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and security are strengths,traditional consensus mechanisms like Proof of Work(PoW)and Proof of Stake(PoS)face limitations in scalability.PoW achieves decentralization and security but struggles with scalability as transaction volumes grow,while PoS enhances scalability,but risks centralization due to monopolization by high-stake participants.Sharding,a recent advancement in blockchain technology,addresses scalability by partitioning the network into shards that process transactions independently,thereby improving throughput and reducing latency.However,cross-shard communication,essential for transactions involving multiple shards,introduces challenges in coordination and fault tolerance.This research introduces a shard-based hybrid consensus model,PoSW,which combines PoW and PoS to mitigate the limitations of both mechanisms.By integrating PoW’s fairness with PoS’s scalability in a shard-based blockchain,the proposed model addresses key issues of scalability and monopolization.We evaluate the model against state-of-the-art consensus algorithms,including Monoxide and Practical Byzantine Fault Tolerance(PBFT).The results show that the proposed PoSW model reduces communication overhead compared to PBFT and improves resource utilization over Monoxide.In addition to performance gains,the security analysis demonstrates that the PoSW model provides robust defense against common blockchain attacks such as the 51%and Sybil attacks,etc.The proposed approach is particularly suited for applications like decentralized finance(DeFi)and supply chain management,which require both high scalability and robust security.The contributions of this research include the development of the PoSW hybrid consensus mechanism,its comparative evaluation with leading algorithms,and a thorough security analysis.These contributions represent a significant step forward in addressing blockchain’s scalability,fairness,and security challenges.展开更多
Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functio...Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functions properly. In order to reach a consensus, it is critical to emphasize the importance of performance and efficiency. The use of the right consensus algorithm will significantly improve the efficiency of a blockchain application. This paper reviewed several types of consensus algorithms used in blockchain and discusses the idea of a new consensus algorithm that can improve the performance of consortium blockchain.展开更多
Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this...Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.展开更多
Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain nee...Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain need rules to limit write permissions.Alliance chain can provide security management functions,using these functions to meet the management between the members,certification,authorization,monitoring and auditing.This article mainly analyzes some requirements realization which applies to the alliance chain,and introduces a new consensus algorithm,generalized Legendre sequence(GLS)consensus algorithm,for alliance chain.GLS algorithms inherit the recognition and verification efficiency of binary sequence ciphers in computer communication and can solve a large number of nodes verification of key distribution issues.In the alliance chain,GLS consensus algorithm can complete node address hiding,automatic task sorting,task automatic grouping,task node scope confirmation,task address binding and stamp timestamp.Moreover,the GLS consensus algorithm increases the difficulty of network malicious attack.展开更多
Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associa...Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associated with subgraph mining in today’s on-demand system.To address this downside,our proposed work introduces a Blockchain-based Consensus algorithm for Authenticated query search in the Large-Scale Dynamic Graphs(BCCA-LSDG).The two-fold process is handled in the proposed BCCA-LSDG:graph indexing and authenticated query search(query processing).A blockchain-based reputation system is meant to maintain the trust blockchain and cloud server of the proposed architecture.To resolve the issues and provide safe big data transmission,the proposed technique also combines blockchain with a consensus algorithm architecture.Security of the big data is ensured by dividing the BC network into distinct networks,each with a restricted number of allowed entities,data kept in the cloud gate server,and data analysis in the blockchain.The consensus algorithm is crucial for maintaining the speed,performance and security of the blockchain.Then Dual Similarity based MapReduce helps in mapping and reducing the relevant subgraphs with the use of optimal feature sets.Finally,the graph index refinement process is undertaken to improve the query results.Concerning query error,fuzzy logic is used to refine the index of the graph dynamically.The proposed technique outperforms advanced methodologies in both blockchain and non-blockchain systems,and the combination of blockchain and subgraph provides a secure communication platform,according to the findings.展开更多
The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to ...The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to support massive network nodes, the common participation over all nodes in the consensus mechanism would lead to increased communication complexity, and the arbitrary selection of master nodes would also lead to inefficient consensus. This paper offered a PBFT consensus method (Role Division-based Practical Byzantine Fault Tolerance, RD-PBFT) to address the above problems based on node role division. First, the nodes in the system voted with each other to divide the high reputation group and low reputation group, and determined the starting reputation value of the nodes. Then, the mobile node in the group was divided into roles according to the high reputation value, and a total of three roles were divided into consensus node, backup node, and supervisory node to reduce the number of nodes involved in the consensus process and reduced the complexity of communication. In addition, an adaptive method was used to select the master nodes in the consensus process, and an integer value was introduced to ensure the unpredictability and equality of the master node selection. Experimentally, it was verified that the algorithm has lower communication complexity and better decentralization characteristics compared with the PBFT consensus algorithm, which improved the efficiency of consensus.展开更多
The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm...The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.展开更多
Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community struc...Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.展开更多
We deal with a consensus control problem for a group of third order agents which are networked by digraphs.Assuming that the control input of each agent is constructed based on weighted difference between its states a...We deal with a consensus control problem for a group of third order agents which are networked by digraphs.Assuming that the control input of each agent is constructed based on weighted difference between its states and those of its neighbor agents, we aim to propose an algorithm on computing the weighting coefficients in the control input. The problem is reduced to designing Hurwitz polynomials with real or complex coefficients. We show that by using Hurwitz polynomials with complex coefficients, a necessary and sufficient condition can be obtained for designing the consensus algorithm. Since the condition is both necessary and sufficient, we provide a kind of parametrization for all the weighting coefficients achieving consensus. Moreover, the condition is a natural extension to second order consensus, and is reasonable and practical due to its comparatively decreased computation burden. The result is also extended to the case where communication delay exists in the control input.展开更多
A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency r...A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.展开更多
Using graph theory, matrix theory, adaptive control, fuzzy logic systems and other tools, this paper studies the leader-follower global consensus of two kinds of stochastic uncertain nonlinear multi-agent systems(MAS)...Using graph theory, matrix theory, adaptive control, fuzzy logic systems and other tools, this paper studies the leader-follower global consensus of two kinds of stochastic uncertain nonlinear multi-agent systems(MAS). Firstly, the fuzzy logic systems replaces the feedback compensator as the feedforward compensator to describe the uncertain nonlinear dynamics. Secondly, based on the network topology, all followers are divided into two categories: One is the followers who can obtain the leader signal, and the other is the follower who cannot obtain the leader signal. Thirdly, based on the adaptive control method, distributed control protocols are designed for the two types of followers. Fourthly, based on matrix theory and stochastic Lyapunov stability theory, the stability of the closed-loop systems is analyzed. Finally, three simulation examples are given to verify the effectiveness of the proposed control algorithms.展开更多
This paper deals with the distributed solving problem of a specific class of linear algebraic equations(LAEs)with block Toeplitz structures.To reduce the communication burden and achieve computation efficiency,a distr...This paper deals with the distributed solving problem of a specific class of linear algebraic equations(LAEs)with block Toeplitz structures.To reduce the communication burden and achieve computation efficiency,a distributed iterative algorithm from the communication-efficient perspective is proposed by incorporating the specific structure of the coefficient matrix tied to any given LAE over a multi-agent network.Each agent possesses a state vector of size smaller than the dimensions of unknown variables related to the LAE and receives information from its neighbors.It is shown that the presented distributed iterative algorithm can solve the specific class of LAEs without requiring any initialization conditions,irrespective of whether it admits a unique solution or multiple solutions.Moreover,an equivalent relation is established between the problem of solving LAEs and the tracking problem of iterative learning control(ILC)systems.The proposed distributed iterative algorithm is leveraged to obtain the distributed control law for ILC systems to realize the tracking objective.Theoretical guarantees are provided for our developed solution results of LAEs,and the effectiveness of them is also verified through simulation examples.展开更多
This paper proposes an IoT-Fog-Cloud distributed consensus algorithm for solving the energy hub(EH)dispatch problem with packet-dropping communication links and some of EH elements'uncertainties.Every generating a...This paper proposes an IoT-Fog-Cloud distributed consensus algorithm for solving the energy hub(EH)dispatch problem with packet-dropping communication links and some of EH elements'uncertainties.Every generating and consumption unit in this algorithm is required to estimate total power generated,total load,and power mismatches.Energy node coordination is accomplished using a distributed approach.Such a distributed approach wins in work sharing,enduring a single link failure,effective decision-making,quickest convergence,and autonomy for global power nodes.The method works with all grid types in connected and islanded modes.Minimizing total operation cost and emissions while meeting total demand and system constraints are the most crucial contributions of this paper.Two case studies are applied to explain performance and effectiveness of the proposed algorithm with different packet loss scenarios.Under uncertainty,sensitivity of the system was evaluated.Results show mismatch between generated and consumed power is improved by 100%in the electricity grid,99.94%in heating grid,and 99.91%in gas grid.Also,total operating cost,total emissions,and emissions cost decreased by 8.6%,13.48%,and 18.73%,respectively.展开更多
This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all ag...This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.展开更多
Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmissio...Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.展开更多
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
基金Supported by the National Natural Science Foundation of China(61672297)。
文摘As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance than the rest of the consensus algorithms,and it does not cause problems such as the concentrated hashing power,resource waste and fork.However,Raft can only be used in a non-byzantine environment with a small network size.In order to enable Raft to be used in a large-scale network with a certain number of byzantine nodes,this paper combines Raft and credit model to propose a Raft blockchain consensus algorithm based on credit model CRaft.In the node credit evaluation phase,RBF-based support vector machine is used as the anomaly detection method,and the node credit evaluation model is constructed.Then the Trust Nodes List(TNL)mechanism is introduced to make the consensus phase in a creditable network environment.Finally,the common node is synchronized to the consensus node to update the blockchain of the entire network.Experiments show that CRaft has better throughput and lower latency than the commonly used consortium blockchain consensus algorithm PBFT(Practical Byzantine Fault Tolerance).
文摘The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and security are strengths,traditional consensus mechanisms like Proof of Work(PoW)and Proof of Stake(PoS)face limitations in scalability.PoW achieves decentralization and security but struggles with scalability as transaction volumes grow,while PoS enhances scalability,but risks centralization due to monopolization by high-stake participants.Sharding,a recent advancement in blockchain technology,addresses scalability by partitioning the network into shards that process transactions independently,thereby improving throughput and reducing latency.However,cross-shard communication,essential for transactions involving multiple shards,introduces challenges in coordination and fault tolerance.This research introduces a shard-based hybrid consensus model,PoSW,which combines PoW and PoS to mitigate the limitations of both mechanisms.By integrating PoW’s fairness with PoS’s scalability in a shard-based blockchain,the proposed model addresses key issues of scalability and monopolization.We evaluate the model against state-of-the-art consensus algorithms,including Monoxide and Practical Byzantine Fault Tolerance(PBFT).The results show that the proposed PoSW model reduces communication overhead compared to PBFT and improves resource utilization over Monoxide.In addition to performance gains,the security analysis demonstrates that the PoSW model provides robust defense against common blockchain attacks such as the 51%and Sybil attacks,etc.The proposed approach is particularly suited for applications like decentralized finance(DeFi)and supply chain management,which require both high scalability and robust security.The contributions of this research include the development of the PoSW hybrid consensus mechanism,its comparative evaluation with leading algorithms,and a thorough security analysis.These contributions represent a significant step forward in addressing blockchain’s scalability,fairness,and security challenges.
文摘Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functions properly. In order to reach a consensus, it is critical to emphasize the importance of performance and efficiency. The use of the right consensus algorithm will significantly improve the efficiency of a blockchain application. This paper reviewed several types of consensus algorithms used in blockchain and discusses the idea of a new consensus algorithm that can improve the performance of consortium blockchain.
文摘Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.
基金We gratefully acknowledge anonymous reviewers who read drafts and made many helpful suggestions.This work is supported by the National Key Research and Development Program No.2018YFC0807002.
文摘Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain need rules to limit write permissions.Alliance chain can provide security management functions,using these functions to meet the management between the members,certification,authorization,monitoring and auditing.This article mainly analyzes some requirements realization which applies to the alliance chain,and introduces a new consensus algorithm,generalized Legendre sequence(GLS)consensus algorithm,for alliance chain.GLS algorithms inherit the recognition and verification efficiency of binary sequence ciphers in computer communication and can solve a large number of nodes verification of key distribution issues.In the alliance chain,GLS consensus algorithm can complete node address hiding,automatic task sorting,task automatic grouping,task node scope confirmation,task address binding and stamp timestamp.Moreover,the GLS consensus algorithm increases the difficulty of network malicious attack.
文摘Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associated with subgraph mining in today’s on-demand system.To address this downside,our proposed work introduces a Blockchain-based Consensus algorithm for Authenticated query search in the Large-Scale Dynamic Graphs(BCCA-LSDG).The two-fold process is handled in the proposed BCCA-LSDG:graph indexing and authenticated query search(query processing).A blockchain-based reputation system is meant to maintain the trust blockchain and cloud server of the proposed architecture.To resolve the issues and provide safe big data transmission,the proposed technique also combines blockchain with a consensus algorithm architecture.Security of the big data is ensured by dividing the BC network into distinct networks,each with a restricted number of allowed entities,data kept in the cloud gate server,and data analysis in the blockchain.The consensus algorithm is crucial for maintaining the speed,performance and security of the blockchain.Then Dual Similarity based MapReduce helps in mapping and reducing the relevant subgraphs with the use of optimal feature sets.Finally,the graph index refinement process is undertaken to improve the query results.Concerning query error,fuzzy logic is used to refine the index of the graph dynamically.The proposed technique outperforms advanced methodologies in both blockchain and non-blockchain systems,and the combination of blockchain and subgraph provides a secure communication platform,according to the findings.
文摘The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to support massive network nodes, the common participation over all nodes in the consensus mechanism would lead to increased communication complexity, and the arbitrary selection of master nodes would also lead to inefficient consensus. This paper offered a PBFT consensus method (Role Division-based Practical Byzantine Fault Tolerance, RD-PBFT) to address the above problems based on node role division. First, the nodes in the system voted with each other to divide the high reputation group and low reputation group, and determined the starting reputation value of the nodes. Then, the mobile node in the group was divided into roles according to the high reputation value, and a total of three roles were divided into consensus node, backup node, and supervisory node to reduce the number of nodes involved in the consensus process and reduced the complexity of communication. In addition, an adaptive method was used to select the master nodes in the consensus process, and an integer value was introduced to ensure the unpredictability and equality of the master node selection. Experimentally, it was verified that the algorithm has lower communication complexity and better decentralization characteristics compared with the PBFT consensus algorithm, which improved the efficiency of consensus.
基金supported by the National Natural Science Foundation of China(62103203)
文摘The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.
基金supported by the National Natural Science Foundation of China(Grant No.61370073)the China Scholarship Council,China(Grant No.201306070037)
文摘Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.
基金supported by Japan Ministry of Education,Sciences and Culture(C21560471)the National Natural Science Foundation of China(61603268)+1 种基金the Research Project Supported by Shanxi Scholarship Council of China(2015-044)the Fundamental Research Project of Shanxi Province(2015021085)
文摘We deal with a consensus control problem for a group of third order agents which are networked by digraphs.Assuming that the control input of each agent is constructed based on weighted difference between its states and those of its neighbor agents, we aim to propose an algorithm on computing the weighting coefficients in the control input. The problem is reduced to designing Hurwitz polynomials with real or complex coefficients. We show that by using Hurwitz polynomials with complex coefficients, a necessary and sufficient condition can be obtained for designing the consensus algorithm. Since the condition is both necessary and sufficient, we provide a kind of parametrization for all the weighting coefficients achieving consensus. Moreover, the condition is a natural extension to second order consensus, and is reasonable and practical due to its comparatively decreased computation burden. The result is also extended to the case where communication delay exists in the control input.
文摘A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.
基金supported by Natural Science Foundation of China(No.61573013)。
文摘Using graph theory, matrix theory, adaptive control, fuzzy logic systems and other tools, this paper studies the leader-follower global consensus of two kinds of stochastic uncertain nonlinear multi-agent systems(MAS). Firstly, the fuzzy logic systems replaces the feedback compensator as the feedforward compensator to describe the uncertain nonlinear dynamics. Secondly, based on the network topology, all followers are divided into two categories: One is the followers who can obtain the leader signal, and the other is the follower who cannot obtain the leader signal. Thirdly, based on the adaptive control method, distributed control protocols are designed for the two types of followers. Fourthly, based on matrix theory and stochastic Lyapunov stability theory, the stability of the closed-loop systems is analyzed. Finally, three simulation examples are given to verify the effectiveness of the proposed control algorithms.
基金supported by the National Natural Science Foundation of China under Grant Nos.U2333215,62273018,and U2133210。
文摘This paper deals with the distributed solving problem of a specific class of linear algebraic equations(LAEs)with block Toeplitz structures.To reduce the communication burden and achieve computation efficiency,a distributed iterative algorithm from the communication-efficient perspective is proposed by incorporating the specific structure of the coefficient matrix tied to any given LAE over a multi-agent network.Each agent possesses a state vector of size smaller than the dimensions of unknown variables related to the LAE and receives information from its neighbors.It is shown that the presented distributed iterative algorithm can solve the specific class of LAEs without requiring any initialization conditions,irrespective of whether it admits a unique solution or multiple solutions.Moreover,an equivalent relation is established between the problem of solving LAEs and the tracking problem of iterative learning control(ILC)systems.The proposed distributed iterative algorithm is leveraged to obtain the distributed control law for ILC systems to realize the tracking objective.Theoretical guarantees are provided for our developed solution results of LAEs,and the effectiveness of them is also verified through simulation examples.
文摘This paper proposes an IoT-Fog-Cloud distributed consensus algorithm for solving the energy hub(EH)dispatch problem with packet-dropping communication links and some of EH elements'uncertainties.Every generating and consumption unit in this algorithm is required to estimate total power generated,total load,and power mismatches.Energy node coordination is accomplished using a distributed approach.Such a distributed approach wins in work sharing,enduring a single link failure,effective decision-making,quickest convergence,and autonomy for global power nodes.The method works with all grid types in connected and islanded modes.Minimizing total operation cost and emissions while meeting total demand and system constraints are the most crucial contributions of this paper.Two case studies are applied to explain performance and effectiveness of the proposed algorithm with different packet loss scenarios.Under uncertainty,sensitivity of the system was evaluated.Results show mismatch between generated and consumed power is improved by 100%in the electricity grid,99.94%in heating grid,and 99.91%in gas grid.Also,total operating cost,total emissions,and emissions cost decreased by 8.6%,13.48%,and 18.73%,respectively.
基金supported by Deanship of Scientific research(CDSR)at KFUPM(RG-1316-1)
文摘This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.
文摘Time synchronization is one of the base techniques in wireless sensor networks(WSNs).This paper proposes a novel time synchronization protocol which is a robust consensusbased algorithm in the existence of transmission delay and packet loss.It compensates for transmission delay and packet loss firstly,and then,estimates clock skew and clock offset in two steps.Simulation and experiment results show that the proposed protocol can keep synchronization error below 2μs in the grid network of 10 nodes or the random network of 90 nodes.Moreover,the synchronization accuracy in the proposed protocol can keep constant when the WSN works up to a month.