Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New...Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars(53 in 2007 and 48 in 2008) were grown in Taoyuan,Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107(a large-panicle type) and Xieyou 107(a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing,Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes.Growth duration(GD), leaf area index(LAI), panicles per m2(PN), and spikelets per m2(SM) were significantly and positively correlated with grain yield(GY) over all years. Sequential path analysis identified PN and panicle weight(PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height(PH), days from heading to maturity(HM), and grain weight(GW) were stable traits that showed little variation across sites or years, whereas GD(mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg.展开更多
Extreme high temperatures detrimental to maize production are projected to occur more frequently with future climate change.Phenology and yield-related traits were investigated under several levels of elevated tempera...Extreme high temperatures detrimental to maize production are projected to occur more frequently with future climate change.Phenology and yield-related traits were investigated under several levels of elevated temperature in two early-maturing hybrid cultivars:Junda 6(grown in northeastern China)and Chalok 1(grown in South Korea).They were cultivated in plastic houses in Suwon,Korea(37.27°N,126.99°E)held at target temperatures of ambient(AT),AT+1.5°C,AT+3°C,and AT+5°C at one sowing date in 2013 and three different sowing dates in 2014.Vegetative and reproductive growth durations showed variation depending on sowing date,experimental year,and cultivar.Growth duration tended to decrease,but not necessarily,with temperature elevation,but somewhat increased again above a certain temperature.High temperature-dependent variation was greater during grain filling than in the vegetative period before anthesis.Elevated temperature showed no significant effects on duration or peak dates of silking and anthesis,and thus on anthesis–silking interval.Grain yield tended to decrease with temperature elevation above ambient,showing a sharper linear decrease with mean growing season temperature increase in Junda 6 than in Chalok 1.The decrease in kernel number accounted for a much greater contribution to the yield reductions due to temperature elevation than did the decrease in individual kernel weight in both cultivars.Individual harvestable kernel weight was not significantly affected by temperature elevation treatments.Kernel number showed a linear decrease with mean growth temperature from early ear formation to early grain-filling stage,with Junda 6 showing a much severer decrease than Chalok 1.Kernel number reduction due to temperature elevation was attributable more to the decrease in differentiated ovule number than to the decrease in kernel set in Chalok 1,but largely to the decrease of kernel set in Junda 6.展开更多
Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice productio...Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two gen- erations (BC4F2 and BC4F4), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both genera-tions. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future.展开更多
Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from ...Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from a SHW-derived variety Chuanmai 42 crossing with a Chinese spring wheat variety Chuannong 16 was used to map QTLs for agronomic traits including grain yield, grains per square meter, thousand-kernel weight, spikes per square meter, grain number per spike, grains weight per spike, and biomass yield. The population was genotyped using 184 simple-sequence repeat (SSR) markers and 34 sequence-related amplified polymorphism (SRAP) markers. Of 76 QTLs (LOD〉2.5) identified, 42 were found to have a positive effect from Chuanmai 42. The QTL QGy.saas-4D.2 associated with grain yield on chromosome 4D was detected in four of the six environments and the combined analysis, and the mean yield, across six environments, of individuals carrying the Chuanmai 42 allele at this locus was 8.9% higher than that of those lines carrying the Chuannong 16 allele. Seven clusters of the yield-coincident QTLs were detected on 1A, 4A, 3B, 5B, 4D, and 7D.展开更多
Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respe...Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respectively. Minghui63 (MH63) has been a widely used restorationline in hybrid rice production in China during the past two decades. The F1 of cross 'MH63O.rufipogon' was backcrossed with MH63 generation by generation. RM9 and RM166 were used toselect the plants from the progeny of the backcross populations. The results were as follows:(1) In BC2F1 population, the percentage of the individuals which have RM9 and RM166 amplifiedbands simultaneously was 12.2%, while in the BC3F1 population, that was 16.3%. (2) Among 400individuals of BC3F1, four yield-promising plants were obtained, with yield being 30% more thanthat of MH63. (3) The products amplified by primer RM166 in O. rufipogon and MH63 weresequenced. It was found that the DNA fragment sequence amplified by RM166 from MH63 was 101 bpshorter than that from O. rufipogon. The 101bp sequence is a part of an intron of the PCNA(proliferating cell nuclear antigen) gene.展开更多
Advanced backcross QTL analysis was used to identify QTLs for seven yield and yield-related traits in a BC2F2 population from the cross between a popular Oryza sativa cv Swarna and O. nivara IRGC81848. Transgressive s...Advanced backcross QTL analysis was used to identify QTLs for seven yield and yield-related traits in a BC2F2 population from the cross between a popular Oryza sativa cv Swarna and O. nivara IRGC81848. Transgressive segregants with more than 15% increased effect over Swarna were observed for all the traits except days to heading and days to 50% flowering. Thirty QTLs were detected for seven yield and yield-related traits using interval and composite interval mapping. Enhancing alleles at 13 (45%) of these QTLs were derived from O. nivara, and enhancing alleles at all the QTLs for stem diameter and rachis diameter were derived from O. nivara. Three stem diameter QTLs, two rachis diameter QTLs and one number of secondary branches QTL identified by both Interval and composite interval mapping contributed more than 15% of the total phenotypic variance. The QTL epistasis was significant for stem diameter and plot yield. The most significant QTLs qSD7.2, qSD8.1 and qSD9.1 for stem diameter, qRD9.1 for rachis diameter and qNSB1.1 for number of secondary branches are good targets to evaluate their use in marker-assisted selection. O. nivara is a good source of novel alleles for yield related traits and reveals major effect QTLs suitable for marker-assisted selection.展开更多
The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of...The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system.展开更多
Experiments were conducted to study the effects of density on growth and biomass partitioning of Leucaena leucocephala seedlings.Four plantations with densities of 10,000,20,000,40,000,and 80,000 seedlings ha^-1 were ...Experiments were conducted to study the effects of density on growth and biomass partitioning of Leucaena leucocephala seedlings.Four plantations with densities of 10,000,20,000,40,000,and 80,000 seedlings ha^-1 were evaluated only from 15 to 25 months after planting.At 15 months,crown height and width decreased with increasing density.Seedling height/dbh ratios increased with increasing density.Biomass increased with greater density according to the yield–density effect equation,which was evident for all densities.With increasing age,biomass division to branches and leaves increased,whereas partitioning to roots decreased in the 10,000 and 20,000 seedlings ha-1 plantings.Partitioning to branches and leaves remained relatively steady,while partitioning to roots increased in the 40,000 and 80,000 seedlings ha^-1 plantings.Biomass division into stem and bark components remained relatively steady in all densities.Yield–density and organ yield–density curves shifted upward with increasing seedling age on a log–log graph throughout the experimental period.展开更多
Development of wheat varieties with high yield and good quality has been a major objective in wheat breeding.A BC 1 F 2-3 population was used to detect QTLs for wheat quality related traits: SDS-sedimentation value (S...Development of wheat varieties with high yield and good quality has been a major objective in wheat breeding.A BC 1 F 2-3 population was used to detect QTLs for wheat quality related traits: SDS-sedimentation value (Ssd),grain protein content (GPC),grain hardness (GH) and 11 mixograph parameters,as well as five agronomic traits: spike length (SL),spikelet number per spike (SPN),grain number per spike (GN),thousand-grain weight (TGW),and plant height (PH).A total of 44 putative QTLs were detected in the present study,31 for quality parameters and 13 for important agronomic traits,including three important major QTLs.One major QTL for Ssd QSsd.saas-1B.1,linked to barc137,explained on average 21.1% of the phenotypic variation in three environments.The allele increasing Ssd at this locus also significantly increased GN.The second locus on chromosome 1B with the linked marker Barc 61 was a major locus for mixograph parameters.It explained 21.3%-32.5%,24.3%-30.6%,30.6%-37% and 20.1%-22.7% of phenotypic variation for mixing tolerance (MT),weakening slope (WS),midline peak time (MPTi) and midline time x =8 value (MTxW),respectively.The third major QTL,explaining above 40% of plant height variation,close to Rht-B 1 on the short arm of chromosome 4BS,co-located with QTL for quality and yield-related traits.展开更多
We build the influence function empirical model of China's grain production at the present stage in view of the factors influencing direct grain subsidies,using Cobb-Douglas production function model.And we estima...We build the influence function empirical model of China's grain production at the present stage in view of the factors influencing direct grain subsidies,using Cobb-Douglas production function model.And we estimate the elasticity coefficient of impact of China's direct grain subsidies on grain yield,using the panel data pertaining to 29 provinces in the period 2004-2007;comparatively analyze the validity and limitation of policy factors of direct grain subsidies on China's grain yield.The results show that at the present stage,the elasticity coefficient of impact of China's direct grain subsidies on grain yield is 0.002 3,and under the existing subsidy system and level,direct grain subsidies play a positive role in increasing grain yield,but the role is limited;the elasticity coefficient of impact of the food price on grain yield is much larger than that of impact of direct grain subsidies on grain yield.Therefore,the government should strengthen and improve direct grain subsidy policies;in the mean time,pay full attention to the use of market mechanism to consolidate the basic role of the food price in promoting food security to a great extent.展开更多
High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date(H...High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date(HD), plant architecture and grain shape in a panel of 416 rice accessions were investigated in this study. A total of 143 markers including 100 simple sequence repeat(SSR) markers and 43 gene-tagged markers were employed in association mapping to detect quantitative trait loci(QTL) responsible for these variations. Among the 7 subpopulations, POP5 in japonica group showed the largest values of HD and grain width(GW), but the smallest values of grain length(GL) and grain length to width ratio(GLW). Among the six indica groups, POP7 had the largest values of HD, GL, GLW, and 1 000-grain weight(TGW). A total of 27 QTLs were detected underlying these phenotypic variations in single year, while 12 of them could be detected in 2006 and 2007. GS3 marker was closely associated with GL, GW and GLW, and widely distributed in different groups. The starch synthesis related gene markers, SSI, SSIIa, SBE1, AGPL4, and ISA1, were linked to plant height(PH), panicle length(PL), flag leaf length(FLL), GW, and GLW. The SSR markers, RM267, RM340 and RM346, were linked to at least two traits. Therefore, these new markers will probably be used to improve rice grain yield or plant architecture when performing marker-assisted selection of proper alleles.展开更多
为探究稻茬小麦深施肥“一基一追”机艺融合技术的增产增效减排机制,2021—2024年在长江下游南通稻茬麦区开展大田试验。试验采用缓释掺混肥料(SRF,N∶P_(2)O_(5)∶K_(2)O=26∶12∶12)和普通尿素(U,46%N),结合自主研发的2BFGK-12(6)260...为探究稻茬小麦深施肥“一基一追”机艺融合技术的增产增效减排机制,2021—2024年在长江下游南通稻茬麦区开展大田试验。试验采用缓释掺混肥料(SRF,N∶P_(2)O_(5)∶K_(2)O=26∶12∶12)和普通尿素(U,46%N),结合自主研发的2BFGK-12(6)260全秸秆茬地洁区旋耕智能施肥播种机和3ZF-4(200)中耕追肥机,设置7种施肥模式(30 cm+15 cm宽窄行种植):以尿素4次分施(N 240 kg hm^(-2),基肥∶分蘖肥∶拔节肥∶孕穗肥=5∶1∶2∶2,窄行基施,追肥全田撒施)为对照(CK);减氮15%(N 204 kg hm^(-2))条件下设置6种处理:M_(1)(100%SRF窄行基施);M_(2)(60%SRF窄行基施+40%U拔节期窄行撒施);M_(3)(60%SRF窄行基施+40%U返青期宽行条施);M_(4)(60%SRF窄行基施+40%SRF返青期窄行撒施);M_(5)(60%SRF窄行基施+40%SRF返青期宽行条施);M_(4+5)(60%SRF窄行基施+20%SRF返青期宽行条施+20%SRF返青期窄行撒施)。研究比较不同施肥模式对小麦产量效益、根系形态生理、氮素利用效率及N_(2)O排放的影响。结果表明,与CK相比,M_(2)~M_(5)处理提高了小麦产量(4.0%~19.0%)和经济效益(13.7%~35.7%),其中M_(4)和M_(5)处理表现最优,分别增产14.1%和19.0%,经济效益提升34.5%和35.7%。这些处理明显改善了根系特性(根干重密度增加9.7%~111.8%,根系活力和氧化力分别提高6.8%~52.0%和4.2%~44.2%),降低N_(2)O累积排放量22.6%~34.5%,提高0~20 cm土层硝态氮含量11.2%~40.0%。在氮素利用方面,M_(2)~M_(5)处理均提高了籽粒氮素积累量、花后氮素积累量及其对籽粒氮素的贡献率,氮肥利用效率指标(包括偏生产力、农学效率和表观利用率)分别显著提升了22.4%~40.0%、29.7%~74.3%和9.41~18.77个百分点。值得注意的是,M_(4)和M_(5)处理表现出最优的综合效益:N_(2)O累积排放量降幅最大(分别达27.0%和34.5%),氮肥表观利用率2季均维持在43.0%以上(均值分别为43.5%和46.8%),同时在生育后期保持较高的根系活性和耕层无机氮含量。相比之下,M_(1)处理虽然实现了最大的N_(2)O减排效果(降幅35.9%),但导致减产10.4%和经济效益下降10.8%,且氮肥利用效率呈现不稳定的年际变化特征。而优化处理M_(4+5)进一步改善了根系形态生理特性,并提高氮肥表观利用率和籽粒氮素积累量。综上,减氮15%条件下(N 204 kg hm^(-2)),缓混肥2次施用处理(M_(4)和M_(5))能实现产量、经济效益、氮肥利用效率和N_(2)O减排的协同提高,并以追肥深施处理(M_(5))效应更强。本研究为稻茬小麦缓释肥减氮优化高效应用提供重要理论依据。展开更多
四川麦区属于我国西南最重要的早熟冬麦区,单位面积有效穗数(或穗容量或单株有效分蘖)成为该麦区产量进一步提升的关键。来自湖北当阳的小麦农家种“孝感麦”具有稳定的条锈病、穗发芽抗性及多有效分蘖、多花多实等突出特点,已成为当前...四川麦区属于我国西南最重要的早熟冬麦区,单位面积有效穗数(或穗容量或单株有效分蘖)成为该麦区产量进一步提升的关键。来自湖北当阳的小麦农家种“孝感麦”具有稳定的条锈病、穗发芽抗性及多有效分蘖、多花多实等突出特点,已成为当前四川麦区小麦种质改良和创新的潜在重要基因源。在产量构成因子中,单位面积有效穗数低成为当前限制小麦品系蜀麦753产量提升的关键因子。为实现蜀麦753的产量突破与结构模式优化及产量与抗病、耐逆协同改良,本研究以多有效分蘖兼具强抗穗发芽特性且携带成株期条锈病抗性基因的小麦农家种“孝感麦”为供体、以携带全生育期条锈病抗性基因且综合性状良好的育成品系蜀麦753为受体,通过杂交、回交及连续多代自交并结合育种目标性状“分段式”选育技术,选育获得了178个蜀麦753/孝感麦育种应用高代稳定品系,旨在提升有效分蘖数量与穗容量的同时转育和聚合抗条锈病和穗发芽基因位点。表型鉴定结果表明,受体亲本蜀麦753的有效分蘖、穗粒数和小穗数改良效果显著,所有高世代品系有效分蘖均高于受体亲本,仅有4个品系小穗数低于受体亲本,平均穗粒数超过70粒。对产量相关性状进行相关性和通径分析发现,供试品系群体中有效分蘖数量与产量呈极显著正相关,表明利用“孝感麦”对蜀麦753的穗容量(或有效穗、单位面积穗数)进行遗传改良对提升产量性状具有显著效果。结合表型和基因型鉴定,获得了2份产量潜力超过8250 kg hm^(-2)的突破性新品系。结合条锈病和穗发芽基因型分析,从供试品系中筛选出1份携带Yr18+Yr24/26+Yr15且对条锈病具有广谱抗性和9份携带TaMyb10抗穗发芽等位基因的优异新品系。本研究表明,通过育种目标性状“分段式”选育技术为利用小麦农家种“孝感麦”改变四川麦区小麦新品系“蜀麦753”的产量结构、实现产量与抗病耐逆协同改良提供了有效技术方案。展开更多
Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multi...Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.展开更多
基金supported by the National Key Technology R&D Program of China (2011BAD16B14, 2012BAD20B05, 2012BAD04B08, and 2013BAD20B05)
文摘Improvement of yield in rice(Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars(53 in 2007 and 48 in 2008) were grown in Taoyuan,Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, II You 107(a large-panicle type) and Xieyou 107(a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing,Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes.Growth duration(GD), leaf area index(LAI), panicles per m2(PN), and spikelets per m2(SM) were significantly and positively correlated with grain yield(GY) over all years. Sequential path analysis identified PN and panicle weight(PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height(PH), days from heading to maturity(HM), and grain weight(GW) were stable traits that showed little variation across sites or years, whereas GD(mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg.
基金support of the Cooperative Research Program for Agriculture Science & Technology Development (PJ0101072016)Rural Development Administration, Republic of Korea
文摘Extreme high temperatures detrimental to maize production are projected to occur more frequently with future climate change.Phenology and yield-related traits were investigated under several levels of elevated temperature in two early-maturing hybrid cultivars:Junda 6(grown in northeastern China)and Chalok 1(grown in South Korea).They were cultivated in plastic houses in Suwon,Korea(37.27°N,126.99°E)held at target temperatures of ambient(AT),AT+1.5°C,AT+3°C,and AT+5°C at one sowing date in 2013 and three different sowing dates in 2014.Vegetative and reproductive growth durations showed variation depending on sowing date,experimental year,and cultivar.Growth duration tended to decrease,but not necessarily,with temperature elevation,but somewhat increased again above a certain temperature.High temperature-dependent variation was greater during grain filling than in the vegetative period before anthesis.Elevated temperature showed no significant effects on duration or peak dates of silking and anthesis,and thus on anthesis–silking interval.Grain yield tended to decrease with temperature elevation above ambient,showing a sharper linear decrease with mean growing season temperature increase in Junda 6 than in Chalok 1.The decrease in kernel number accounted for a much greater contribution to the yield reductions due to temperature elevation than did the decrease in individual kernel weight in both cultivars.Individual harvestable kernel weight was not significantly affected by temperature elevation treatments.Kernel number showed a linear decrease with mean growth temperature from early ear formation to early grain-filling stage,with Junda 6 showing a much severer decrease than Chalok 1.Kernel number reduction due to temperature elevation was attributable more to the decrease in differentiated ovule number than to the decrease in kernel set in Chalok 1,but largely to the decrease of kernel set in Junda 6.
基金supported by grants from the Project of Conservation and Utilization of Agro-Wild Plants of the Ministry of Agriculture of Chinathe National High-Tech Research and Development ("863") Program of China (No. 2006AA100101)the "111" Project (No. B06003)
文摘Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two gen- erations (BC4F2 and BC4F4), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both genera-tions. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future.
基金supported by the Sichuan Provincial Youth Foundation,China (09ZQ026-086)the earmarked fund for Modern Agro-Industry Technology Research System,China (nycytx-03)+1 种基金the National 863 Program of China (2006AA10Z1C6)the National Natural Science Foundation of China (30771338 and30871532)
文摘Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from a SHW-derived variety Chuanmai 42 crossing with a Chinese spring wheat variety Chuannong 16 was used to map QTLs for agronomic traits including grain yield, grains per square meter, thousand-kernel weight, spikes per square meter, grain number per spike, grains weight per spike, and biomass yield. The population was genotyped using 184 simple-sequence repeat (SSR) markers and 34 sequence-related amplified polymorphism (SRAP) markers. Of 76 QTLs (LOD〉2.5) identified, 42 were found to have a positive effect from Chuanmai 42. The QTL QGy.saas-4D.2 associated with grain yield on chromosome 4D was detected in four of the six environments and the combined analysis, and the mean yield, across six environments, of individuals carrying the Chuanmai 42 allele at this locus was 8.9% higher than that of those lines carrying the Chuannong 16 allele. Seven clusters of the yield-coincident QTLs were detected on 1A, 4A, 3B, 5B, 4D, and 7D.
文摘Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respectively. Minghui63 (MH63) has been a widely used restorationline in hybrid rice production in China during the past two decades. The F1 of cross 'MH63O.rufipogon' was backcrossed with MH63 generation by generation. RM9 and RM166 were used toselect the plants from the progeny of the backcross populations. The results were as follows:(1) In BC2F1 population, the percentage of the individuals which have RM9 and RM166 amplifiedbands simultaneously was 12.2%, while in the BC3F1 population, that was 16.3%. (2) Among 400individuals of BC3F1, four yield-promising plants were obtained, with yield being 30% more thanthat of MH63. (3) The products amplified by primer RM166 in O. rufipogon and MH63 weresequenced. It was found that the DNA fragment sequence amplified by RM166 from MH63 was 101 bpshorter than that from O. rufipogon. The 101bp sequence is a part of an intron of the PCNA(proliferating cell nuclear antigen) gene.
基金the Department of Biotechnology, Government of India for financial support to the Network Project on Functional Genomics of rice at the Directorate of Rice Research, Andhra Pradesh, India
文摘Advanced backcross QTL analysis was used to identify QTLs for seven yield and yield-related traits in a BC2F2 population from the cross between a popular Oryza sativa cv Swarna and O. nivara IRGC81848. Transgressive segregants with more than 15% increased effect over Swarna were observed for all the traits except days to heading and days to 50% flowering. Thirty QTLs were detected for seven yield and yield-related traits using interval and composite interval mapping. Enhancing alleles at 13 (45%) of these QTLs were derived from O. nivara, and enhancing alleles at all the QTLs for stem diameter and rachis diameter were derived from O. nivara. Three stem diameter QTLs, two rachis diameter QTLs and one number of secondary branches QTL identified by both Interval and composite interval mapping contributed more than 15% of the total phenotypic variance. The QTL epistasis was significant for stem diameter and plot yield. The most significant QTLs qSD7.2, qSD8.1 and qSD9.1 for stem diameter, qRD9.1 for rachis diameter and qNSB1.1 for number of secondary branches are good targets to evaluate their use in marker-assisted selection. O. nivara is a good source of novel alleles for yield related traits and reveals major effect QTLs suitable for marker-assisted selection.
基金supported by the Key Technologies R&D Program of China during the 12th Five-year Plan period(2012BAD14B16-04)the Science and Technology Development Program of Guangdong,China(2012A020100003 and 2015B090903077)
文摘The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system.
基金partially supported by the Forestry Technology Popularization Demonstration Project of the Central Government of China(2015-GDTK-07)
文摘Experiments were conducted to study the effects of density on growth and biomass partitioning of Leucaena leucocephala seedlings.Four plantations with densities of 10,000,20,000,40,000,and 80,000 seedlings ha^-1 were evaluated only from 15 to 25 months after planting.At 15 months,crown height and width decreased with increasing density.Seedling height/dbh ratios increased with increasing density.Biomass increased with greater density according to the yield–density effect equation,which was evident for all densities.With increasing age,biomass division to branches and leaves increased,whereas partitioning to roots decreased in the 10,000 and 20,000 seedlings ha-1 plantings.Partitioning to branches and leaves remained relatively steady,while partitioning to roots increased in the 40,000 and 80,000 seedlings ha^-1 plantings.Biomass division into stem and bark components remained relatively steady in all densities.Yield–density and organ yield–density curves shifted upward with increasing seedling age on a log–log graph throughout the experimental period.
基金Supported by the Youth Foundation of Shandong Academy of Agricultural Sciences(2014QNZ02)the National Natural Science Foundation of China(31401378,31501312,31701428 and 31601301)+3 种基金the Science and Technology Development Plan of Shandong Province(2014GSF121001)the Key Research and Development Plan of Shandong Province(2017GNC10113)the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016C09)the Youth Foundation of Crop Research Institute of Shandong Academy of Agricultural Sciences
文摘Development of wheat varieties with high yield and good quality has been a major objective in wheat breeding.A BC 1 F 2-3 population was used to detect QTLs for wheat quality related traits: SDS-sedimentation value (Ssd),grain protein content (GPC),grain hardness (GH) and 11 mixograph parameters,as well as five agronomic traits: spike length (SL),spikelet number per spike (SPN),grain number per spike (GN),thousand-grain weight (TGW),and plant height (PH).A total of 44 putative QTLs were detected in the present study,31 for quality parameters and 13 for important agronomic traits,including three important major QTLs.One major QTL for Ssd QSsd.saas-1B.1,linked to barc137,explained on average 21.1% of the phenotypic variation in three environments.The allele increasing Ssd at this locus also significantly increased GN.The second locus on chromosome 1B with the linked marker Barc 61 was a major locus for mixograph parameters.It explained 21.3%-32.5%,24.3%-30.6%,30.6%-37% and 20.1%-22.7% of phenotypic variation for mixing tolerance (MT),weakening slope (WS),midline peak time (MPTi) and midline time x =8 value (MTxW),respectively.The third major QTL,explaining above 40% of plant height variation,close to Rht-B 1 on the short arm of chromosome 4BS,co-located with QTL for quality and yield-related traits.
基金Supported by Scientific Research Foundation Project of Southwest University(SWU1109039)Fundamental Research Funds for the Central Universities(SWU1109039)
文摘We build the influence function empirical model of China's grain production at the present stage in view of the factors influencing direct grain subsidies,using Cobb-Douglas production function model.And we estimate the elasticity coefficient of impact of China's direct grain subsidies on grain yield,using the panel data pertaining to 29 provinces in the period 2004-2007;comparatively analyze the validity and limitation of policy factors of direct grain subsidies on China's grain yield.The results show that at the present stage,the elasticity coefficient of impact of China's direct grain subsidies on grain yield is 0.002 3,and under the existing subsidy system and level,direct grain subsidies play a positive role in increasing grain yield,but the role is limited;the elasticity coefficient of impact of the food price on grain yield is much larger than that of impact of direct grain subsidies on grain yield.Therefore,the government should strengthen and improve direct grain subsidy policies;in the mean time,pay full attention to the use of market mechanism to consolidate the basic role of the food price in promoting food security to a great extent.
基金financially supported by the Fundamental Research Funds for the Central Universities at Zhejiang University, China (2016XZZX001-09)
文摘High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date(HD), plant architecture and grain shape in a panel of 416 rice accessions were investigated in this study. A total of 143 markers including 100 simple sequence repeat(SSR) markers and 43 gene-tagged markers were employed in association mapping to detect quantitative trait loci(QTL) responsible for these variations. Among the 7 subpopulations, POP5 in japonica group showed the largest values of HD and grain width(GW), but the smallest values of grain length(GL) and grain length to width ratio(GLW). Among the six indica groups, POP7 had the largest values of HD, GL, GLW, and 1 000-grain weight(TGW). A total of 27 QTLs were detected underlying these phenotypic variations in single year, while 12 of them could be detected in 2006 and 2007. GS3 marker was closely associated with GL, GW and GLW, and widely distributed in different groups. The starch synthesis related gene markers, SSI, SSIIa, SBE1, AGPL4, and ISA1, were linked to plant height(PH), panicle length(PL), flag leaf length(FLL), GW, and GLW. The SSR markers, RM267, RM340 and RM346, were linked to at least two traits. Therefore, these new markers will probably be used to improve rice grain yield or plant architecture when performing marker-assisted selection of proper alleles.
文摘为探究稻茬小麦深施肥“一基一追”机艺融合技术的增产增效减排机制,2021—2024年在长江下游南通稻茬麦区开展大田试验。试验采用缓释掺混肥料(SRF,N∶P_(2)O_(5)∶K_(2)O=26∶12∶12)和普通尿素(U,46%N),结合自主研发的2BFGK-12(6)260全秸秆茬地洁区旋耕智能施肥播种机和3ZF-4(200)中耕追肥机,设置7种施肥模式(30 cm+15 cm宽窄行种植):以尿素4次分施(N 240 kg hm^(-2),基肥∶分蘖肥∶拔节肥∶孕穗肥=5∶1∶2∶2,窄行基施,追肥全田撒施)为对照(CK);减氮15%(N 204 kg hm^(-2))条件下设置6种处理:M_(1)(100%SRF窄行基施);M_(2)(60%SRF窄行基施+40%U拔节期窄行撒施);M_(3)(60%SRF窄行基施+40%U返青期宽行条施);M_(4)(60%SRF窄行基施+40%SRF返青期窄行撒施);M_(5)(60%SRF窄行基施+40%SRF返青期宽行条施);M_(4+5)(60%SRF窄行基施+20%SRF返青期宽行条施+20%SRF返青期窄行撒施)。研究比较不同施肥模式对小麦产量效益、根系形态生理、氮素利用效率及N_(2)O排放的影响。结果表明,与CK相比,M_(2)~M_(5)处理提高了小麦产量(4.0%~19.0%)和经济效益(13.7%~35.7%),其中M_(4)和M_(5)处理表现最优,分别增产14.1%和19.0%,经济效益提升34.5%和35.7%。这些处理明显改善了根系特性(根干重密度增加9.7%~111.8%,根系活力和氧化力分别提高6.8%~52.0%和4.2%~44.2%),降低N_(2)O累积排放量22.6%~34.5%,提高0~20 cm土层硝态氮含量11.2%~40.0%。在氮素利用方面,M_(2)~M_(5)处理均提高了籽粒氮素积累量、花后氮素积累量及其对籽粒氮素的贡献率,氮肥利用效率指标(包括偏生产力、农学效率和表观利用率)分别显著提升了22.4%~40.0%、29.7%~74.3%和9.41~18.77个百分点。值得注意的是,M_(4)和M_(5)处理表现出最优的综合效益:N_(2)O累积排放量降幅最大(分别达27.0%和34.5%),氮肥表观利用率2季均维持在43.0%以上(均值分别为43.5%和46.8%),同时在生育后期保持较高的根系活性和耕层无机氮含量。相比之下,M_(1)处理虽然实现了最大的N_(2)O减排效果(降幅35.9%),但导致减产10.4%和经济效益下降10.8%,且氮肥利用效率呈现不稳定的年际变化特征。而优化处理M_(4+5)进一步改善了根系形态生理特性,并提高氮肥表观利用率和籽粒氮素积累量。综上,减氮15%条件下(N 204 kg hm^(-2)),缓混肥2次施用处理(M_(4)和M_(5))能实现产量、经济效益、氮肥利用效率和N_(2)O减排的协同提高,并以追肥深施处理(M_(5))效应更强。本研究为稻茬小麦缓释肥减氮优化高效应用提供重要理论依据。
文摘四川麦区属于我国西南最重要的早熟冬麦区,单位面积有效穗数(或穗容量或单株有效分蘖)成为该麦区产量进一步提升的关键。来自湖北当阳的小麦农家种“孝感麦”具有稳定的条锈病、穗发芽抗性及多有效分蘖、多花多实等突出特点,已成为当前四川麦区小麦种质改良和创新的潜在重要基因源。在产量构成因子中,单位面积有效穗数低成为当前限制小麦品系蜀麦753产量提升的关键因子。为实现蜀麦753的产量突破与结构模式优化及产量与抗病、耐逆协同改良,本研究以多有效分蘖兼具强抗穗发芽特性且携带成株期条锈病抗性基因的小麦农家种“孝感麦”为供体、以携带全生育期条锈病抗性基因且综合性状良好的育成品系蜀麦753为受体,通过杂交、回交及连续多代自交并结合育种目标性状“分段式”选育技术,选育获得了178个蜀麦753/孝感麦育种应用高代稳定品系,旨在提升有效分蘖数量与穗容量的同时转育和聚合抗条锈病和穗发芽基因位点。表型鉴定结果表明,受体亲本蜀麦753的有效分蘖、穗粒数和小穗数改良效果显著,所有高世代品系有效分蘖均高于受体亲本,仅有4个品系小穗数低于受体亲本,平均穗粒数超过70粒。对产量相关性状进行相关性和通径分析发现,供试品系群体中有效分蘖数量与产量呈极显著正相关,表明利用“孝感麦”对蜀麦753的穗容量(或有效穗、单位面积穗数)进行遗传改良对提升产量性状具有显著效果。结合表型和基因型鉴定,获得了2份产量潜力超过8250 kg hm^(-2)的突破性新品系。结合条锈病和穗发芽基因型分析,从供试品系中筛选出1份携带Yr18+Yr24/26+Yr15且对条锈病具有广谱抗性和9份携带TaMyb10抗穗发芽等位基因的优异新品系。本研究表明,通过育种目标性状“分段式”选育技术为利用小麦农家种“孝感麦”改变四川麦区小麦新品系“蜀麦753”的产量结构、实现产量与抗病耐逆协同改良提供了有效技术方案。
基金Supported by the Project of Conservation and Utilization of Agricultural Wild Plants of the Ministry of Agriculture of China and a Grant from High- Tech Research and Development (863) Program of China (2006AA100101 ), and the National Natural Science Foundation of China (30270803). Publication of this paper is supported by the National Natural Science Foundation of China (30624808).
文摘Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.