The combined loading tests of 5754 O aluminum alloy sheet are used to verify the yield function. Three yield functions are implemented into the commercial finite element model(FEM) code ABAQUS as a user material subro...The combined loading tests of 5754 O aluminum alloy sheet are used to verify the yield function. Three yield functions are implemented into the commercial finite element model(FEM) code ABAQUS as a user material subroutine UMAT for the FEM simulation of the combined loading tests. The comparison of the simulating and experimental results shows that the modified Yld2000-2d yield function can describe the mechanical behavior of5754 O aluminum alloy sheet under combined loading paths reasonably while other three yield functions do not.The performance of the modified Yld2000-2d yield function on describing the mechanical behavior under combined loading paths is analyzed in detail. It is concluded that the modified Yld2000-2d yield function can be adopted to describe the deformation behavior of 5754 O aluminum alloy sheet for industrial applications.展开更多
Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. ...Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. The results indicate that the pre-compressive strain remarkably affects the reverse tensile yield stress and the width of the detwinning-dominant stage during inverse tension process. Similar to stress–strain curve of the uniaxial compression, the curve of reverse tensile yield value also has ‘S' shape, and its minimum value is only 38 MPa. The relationship between pre-compressive strain and the width of detwinning-dominant stage presents a linear growth, and the greater the precompressive strain is, the smaller the strain hardening rate of the detwinning-slip-dominant stage is. Compared with the reverse tension under pre-compression, the influence of the pre-tension deformation on the deformation mechanism of subsequent compression is relatively simple. With the increase in pre-tension strain, the yield stress of the reverse loading is rising.展开更多
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ...Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.展开更多
Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method,the sub...Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method,the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well,whereas isotropic hardening mode,which is widely used in sheet metal forming fields,predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.展开更多
The biaxial tensile tests were carried out to investigate the deformation behavior and yield loci of dual-phase (DP) steel sheets under biaxial tensile conditions. The true stress-true strain curves of DP steel shee...The biaxial tensile tests were carried out to investigate the deformation behavior and yield loci of dual-phase (DP) steel sheets under biaxial tensile conditions. The true stress-true strain curves of DP steel sheets for different loading ratios were obtained, and the experimental yield loci were determined based on the equivalent plastic work principle. The experimental yield loci were compared to the theoretical yield loci based on Hi1148, Hi1190, Hi1193, Hosford, Barlat89, Yld2000-2d and Gotoh yield criteria. It is found that Yld2000-2d yield criterion can describe the general trends of experimental yield loci of DP steel sheets with comparably higher accuracy. Hosford criterion has the maximum error for DP590, whereas Hi1148 and Barlat89 have the maximum errors for DP780 and DP980.展开更多
To investigate the macro and micro behaviors of TRIP (transformation induced plasticity) steel under biaxial loading, experiment and finite element simulation were carried out for TRIP780 steel under proportional bi...To investigate the macro and micro behaviors of TRIP (transformation induced plasticity) steel under biaxial loading, experiment and finite element simulation were carried out for TRIP780 steel under proportional biaxial tension with displacement ratio of 1 : 1, 2 : 1, 3 : 1 and 4 : 1, respectively. The results show that cruciform specimens of TRIP780 steel fractured under proportional biaxial stretching when effective strain was about L 5 %, and fracture was always generated on the cross arm or cross links. During biaxial tension, stress and strain components in x and y directions of the center of the samples have the same nonlinear developing tendency, decreasing in one direction and increasing in another direction. Equal biaxial stretching stress state was helpful for retained austenite-martensite transformation than the other biaxial stress state. With increasing displacement ratio (DR) from 1 : 1 to 4 : 1, corresponding stress distributed unevenly on the yield ellipse from 30° to 60° in the first quadrant of stress space and corresponding retained austenite volume fraction distributed symmetrically in bow tie format.展开更多
The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the im...The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the improvement of the load-carrying capacity or the reduction of the weight of plates, the yield line analytical method is employed in this paper to design the bulkhead plate to improve economy and increase the effiective load. Besides, a further sutdy of this method has been made theoretically and experimentally, and the data of the limited load-carrying capacity of the plate have been obtained. Furthermore, the safety coefficients for such a method are presented, which can be used as reference for related departments and staffs.展开更多
A finite element method based program has been developed to perform the static nonlinear analysis of pile group with six different configurations subjected to lateral loads. The pile has been assumed to remain elastic...A finite element method based program has been developed to perform the static nonlinear analysis of pile group with six different configurations subjected to lateral loads. The pile has been assumed to remain elastic all the time whereas the soil has been assumed to undergo plastic yielding following von Mises yield criterion. The formulation of elasto-plastic analysis following von Mises yield criterion has been explained. The effect of Drucker-Prager and Mohr Coulomb yield criteria on the response of pile group is also investigated. The whole analysis is based on incremental load application. The external load is applied in small increments and the stresses are initially computed assuming elastic constitutive relation. Significant effect of soil nonlinearity is observed at smaller pile spacing which reduces with increase in spacing.展开更多
The present study develops a novel type of active joint node-bolt fasten wedge(BFW)active joints,aiming to investigate the load-bearing capacity of a BFW joint in a quantitative way and put forward precise formulas fo...The present study develops a novel type of active joint node-bolt fasten wedge(BFW)active joints,aiming to investigate the load-bearing capacity of a BFW joint in a quantitative way and put forward precise formulas for its yield load and compression rigidity.To achieve this,indoor axial loading tests were conducted on two BFW joints,accompanied by a set of numerical simulations with the finite element approach implemented in ABAQUS.Parametric research was then conducted to assess the impact of various factors on the yield load and initial compression rigidity of BFW joints,leading to the derivation of precise calculation formulas for accurate prediction of these parameters.The key findings indicate that enhancing the bolt strength from 10.9 to 12.9 significantly improves mechanical performance.Under axial compression,the final bearing force,yield load,and initial compression rigidity increase by 0.86,1.06,and 0.15 times,respectively.Numerical models accurately predict joint behavior under axial force,confirming their reliability.Parameter studies reveal that increasing web and eaves thickness,bolt strength,and diameter improves bearing capacity,while splint thickness has little effect.The fitting formulas introduced can precisely estimate yield load and rigidity,providing practical value for engineering applications.展开更多
基金the National Natural Science Foundation of China(No.51475003)the Beijing Municipal Natural Science Foundation of China(No.3152010)the Beijing Municipal Education Committee Science and Technology Program(No.KM201510009004)
文摘The combined loading tests of 5754 O aluminum alloy sheet are used to verify the yield function. Three yield functions are implemented into the commercial finite element model(FEM) code ABAQUS as a user material subroutine UMAT for the FEM simulation of the combined loading tests. The comparison of the simulating and experimental results shows that the modified Yld2000-2d yield function can describe the mechanical behavior of5754 O aluminum alloy sheet under combined loading paths reasonably while other three yield functions do not.The performance of the modified Yld2000-2d yield function on describing the mechanical behavior under combined loading paths is analyzed in detail. It is concluded that the modified Yld2000-2d yield function can be adopted to describe the deformation behavior of 5754 O aluminum alloy sheet for industrial applications.
基金supported by the National Nature Science Foundation of China (No. 51174189)
文摘Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. The results indicate that the pre-compressive strain remarkably affects the reverse tensile yield stress and the width of the detwinning-dominant stage during inverse tension process. Similar to stress–strain curve of the uniaxial compression, the curve of reverse tensile yield value also has ‘S' shape, and its minimum value is only 38 MPa. The relationship between pre-compressive strain and the width of detwinning-dominant stage presents a linear growth, and the greater the precompressive strain is, the smaller the strain hardening rate of the detwinning-slip-dominant stage is. Compared with the reverse tension under pre-compression, the influence of the pre-tension deformation on the deformation mechanism of subsequent compression is relatively simple. With the increase in pre-tension strain, the yield stress of the reverse loading is rising.
文摘Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.
基金Project(50475004) supported by the National Natural Science Foundation of China
文摘Complex loading paths were realized with cruciform specimens and biaxial loading testing machine. Experimental method for determining the subsequent yield locus of sheet metal was established. With this method,the subsequent yield loci of 5754O aluminum alloy sheet were obtained under complex loading paths. Theoretical subsequent yield loci based on Yld2000-2d yield criterion and three kinds of hardening modes were calculated and compared with the experimental results. The results show that the theoretical subsequent yield loci based on mixed hardening mode describe the experimental subsequent yield loci well,whereas isotropic hardening mode,which is widely used in sheet metal forming fields,predicts values larger than the experimental results. Kinematic hardening mode predicts values smaller than the experimental results and its errors are the largest.
基金This research was funded by National Natural Science Foundation of China (51275026) and State Key Laboratory of Development and Application Technology of Automotive Steels (Bao Steel Y 12ECEQ07Y).
文摘The biaxial tensile tests were carried out to investigate the deformation behavior and yield loci of dual-phase (DP) steel sheets under biaxial tensile conditions. The true stress-true strain curves of DP steel sheets for different loading ratios were obtained, and the experimental yield loci were determined based on the equivalent plastic work principle. The experimental yield loci were compared to the theoretical yield loci based on Hi1148, Hi1190, Hi1193, Hosford, Barlat89, Yld2000-2d and Gotoh yield criteria. It is found that Yld2000-2d yield criterion can describe the general trends of experimental yield loci of DP steel sheets with comparably higher accuracy. Hosford criterion has the maximum error for DP590, whereas Hi1148 and Barlat89 have the maximum errors for DP780 and DP980.
基金Item Sponsored by National Natural Science Foundation of China(51075034)
文摘To investigate the macro and micro behaviors of TRIP (transformation induced plasticity) steel under biaxial loading, experiment and finite element simulation were carried out for TRIP780 steel under proportional biaxial tension with displacement ratio of 1 : 1, 2 : 1, 3 : 1 and 4 : 1, respectively. The results show that cruciform specimens of TRIP780 steel fractured under proportional biaxial stretching when effective strain was about L 5 %, and fracture was always generated on the cross arm or cross links. During biaxial tension, stress and strain components in x and y directions of the center of the samples have the same nonlinear developing tendency, decreasing in one direction and increasing in another direction. Equal biaxial stretching stress state was helpful for retained austenite-martensite transformation than the other biaxial stress state. With increasing displacement ratio (DR) from 1 : 1 to 4 : 1, corresponding stress distributed unevenly on the yield ellipse from 30° to 60° in the first quadrant of stress space and corresponding retained austenite volume fraction distributed symmetrically in bow tie format.
文摘The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the improvement of the load-carrying capacity or the reduction of the weight of plates, the yield line analytical method is employed in this paper to design the bulkhead plate to improve economy and increase the effiective load. Besides, a further sutdy of this method has been made theoretically and experimentally, and the data of the limited load-carrying capacity of the plate have been obtained. Furthermore, the safety coefficients for such a method are presented, which can be used as reference for related departments and staffs.
文摘A finite element method based program has been developed to perform the static nonlinear analysis of pile group with six different configurations subjected to lateral loads. The pile has been assumed to remain elastic all the time whereas the soil has been assumed to undergo plastic yielding following von Mises yield criterion. The formulation of elasto-plastic analysis following von Mises yield criterion has been explained. The effect of Drucker-Prager and Mohr Coulomb yield criteria on the response of pile group is also investigated. The whole analysis is based on incremental load application. The external load is applied in small increments and the stresses are initially computed assuming elastic constitutive relation. Significant effect of soil nonlinearity is observed at smaller pile spacing which reduces with increase in spacing.
基金the financial support provided by Beijing Natural Science Foundation(Grant No.8222005)the Natural Science Foundation of China(Grant No.51978018)Science and Technology Funding Scheme for the Third Construction Engineering Company Ltd.of China Construction Second Engineering Bureau(Grant No.CSCEC2b3c-2021-K-65).
文摘The present study develops a novel type of active joint node-bolt fasten wedge(BFW)active joints,aiming to investigate the load-bearing capacity of a BFW joint in a quantitative way and put forward precise formulas for its yield load and compression rigidity.To achieve this,indoor axial loading tests were conducted on two BFW joints,accompanied by a set of numerical simulations with the finite element approach implemented in ABAQUS.Parametric research was then conducted to assess the impact of various factors on the yield load and initial compression rigidity of BFW joints,leading to the derivation of precise calculation formulas for accurate prediction of these parameters.The key findings indicate that enhancing the bolt strength from 10.9 to 12.9 significantly improves mechanical performance.Under axial compression,the final bearing force,yield load,and initial compression rigidity increase by 0.86,1.06,and 0.15 times,respectively.Numerical models accurately predict joint behavior under axial force,confirming their reliability.Parameter studies reveal that increasing web and eaves thickness,bolt strength,and diameter improves bearing capacity,while splint thickness has little effect.The fitting formulas introduced can precisely estimate yield load and rigidity,providing practical value for engineering applications.