By the nonlinear optimization theory, we predict the yield function of single BCC crystals in Hill's criterion form. Then we give a formula on the macroscopic yield function of a BCC polycrystal Ω under Sachs' mode...By the nonlinear optimization theory, we predict the yield function of single BCC crystals in Hill's criterion form. Then we give a formula on the macroscopic yield function of a BCC polycrystal Ω under Sachs' model, where the volume average of the yield functions of all BCC crystallites in Ω is taken as the macroscopic yield function of the BCC polycrystal. In constructing the formula, we try to find the relationship among the macroscopic yield function, the orientation distribution function (ODF), and the single BCC crystal's plasticity. An expression for the yield stress of a uniaxial tensile problem is derived under Taylor's model in order to compare the expression with that of the macroscopic yield function.展开更多
The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane str...The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane strain test carried out with the traditional uniaxialtesting machine is suggested to provide the experimental data for calibration of anisotropic yield function. This simplified method byusing plane strain test was adopted to identify the parameters of Yld2000-2d yield function for 5xxx aluminum alloy and AlMgSialloy sheets. The predicted results of yield stresses, anisotropic coefficients and yield loci by the proposed method were very similarwith the experimental data and those by the equi-biaxial tensile test. It is validated that the plane strain test is effective to provideexperimental data instead of equi-biaxial tensile test for calibration of Yld2000-2d yield function.展开更多
The combined loading tests of 5754 O aluminum alloy sheet are used to verify the yield function. Three yield functions are implemented into the commercial finite element model(FEM) code ABAQUS as a user material subro...The combined loading tests of 5754 O aluminum alloy sheet are used to verify the yield function. Three yield functions are implemented into the commercial finite element model(FEM) code ABAQUS as a user material subroutine UMAT for the FEM simulation of the combined loading tests. The comparison of the simulating and experimental results shows that the modified Yld2000-2d yield function can describe the mechanical behavior of5754 O aluminum alloy sheet under combined loading paths reasonably while other three yield functions do not.The performance of the modified Yld2000-2d yield function on describing the mechanical behavior under combined loading paths is analyzed in detail. It is concluded that the modified Yld2000-2d yield function can be adopted to describe the deformation behavior of 5754 O aluminum alloy sheet for industrial applications.展开更多
A quadratic yield function which can describe the anisotropic behaviors of sheet metals with tension/compression symmetry and asymmetry is proposed.Five mechanical properties are adopted to determine the coefficients ...A quadratic yield function which can describe the anisotropic behaviors of sheet metals with tension/compression symmetry and asymmetry is proposed.Five mechanical properties are adopted to determine the coefficients of each part of the yield function.For particular cases,the proposed yield function can be simplified to Mises or Hill’s quadratic yield function.The anisotropic mechanical properties are expressed by defining an angle between the current normalized principal stress space and the reference direction with the assumption of orthotropic anisotropy.The accuracy of the proposed yield function in describing the anisotropy under tension and compression is demonstrated.展开更多
The calculation procedure of the continuum mechanics of textured polycrystals (CMTP) method is reviewed to estimate calculating time with various yield functions (YFs). A so called semi quadratic YF is proposed to ...The calculation procedure of the continuum mechanics of textured polycrystals (CMTP) method is reviewed to estimate calculating time with various yield functions (YFs). A so called semi quadratic YF is proposed to eliminate time consuming numerical calculation and avoid the decrease of prediction precision. The reasonability of the new YF is proved by making the comparisons between predicted R values and earing behaviour for some materials and the experimental results.展开更多
A new Don-quadratic orthotropic yield function is developed in the present paper.It does not have those limitatioins which existing non-quadratic anisotropic yield functions have,such as being usable only for the plan...A new Don-quadratic orthotropic yield function is developed in the present paper.It does not have those limitatioins which existing non-quadratic anisotropic yield functions have,such as being usable only for the plane stress problems and in-plane isotropic sheet metals,and that the directions of principal stress or the ex ponent in yield function can not be arbitrary,etc.Furthermore all of the material constants involved in this yield function can be determined by performing only uniaxial tension lest.This yield function contains three new parameters,of which each one is present for one principal plane of anisotropy.Their values can be.generally,selected to equal 3.Other methods to determine the value of these parmeters are discussed and given in this paper.From the regression estimate for the yield stress in five directions of several kinds of titanium metal sheet.it is obtained that the suitable value of exponent in yield function for titanium sheets is 6 or 8.This is confirmed from the use for several plastic deformation problems of titanium sheets.展开更多
A new yield function taking effect of hydrostatic stress into account is presented through establishing and solving the functional equation satisfied by the yield function, and its characteristic is simple in form and...A new yield function taking effect of hydrostatic stress into account is presented through establishing and solving the functional equation satisfied by the yield function, and its characteristic is simple in form and strong in generality. In order to reveal its availability, a comparison is made between the results obtained with it and the experimental results of grey cast iron has be done, both seem to be in good agreement. At the same time, taking the yield function obtained here as a potential function, a new associative plastic constitutive equation taking effect of hydrostatic stress into account is built, and the plastic volume change ratio of plastic deformation is given.展开更多
The anisotropy of stamped sheet metal exerts evident effects on the formability. Barlat six component yield function was introduced into the elastoplastic finite element formulation based on the principle of virtual v...The anisotropy of stamped sheet metal exerts evident effects on the formability. Barlat six component yield function was introduced into the elastoplastic finite element formulation based on the principle of virtual velocity and the discrete Kirchhoff triangular element model. The flanging earing in cylindrical cup drawing process of circular sheet metal was numerically simulated. The influence of anisotropy on the forming process was studied.展开更多
Soil salinization and non-point source pollution are among the most important and widespread environmental problems in European Mediterranean regions. Sweet sorghum (Sorghum bicolor (L.) Moench var. saccharatum) i...Soil salinization and non-point source pollution are among the most important and widespread environmental problems in European Mediterranean regions. Sweet sorghum (Sorghum bicolor (L.) Moench var. saccharatum) is a moderate to high salinity tolerant crop with low water and nutrient needs, seen as an alternative to grow in the water scarce regions. A three-year multifactorial study was conducted in southern Portugal to evaluate the combined effects of saline water and nitrogen application on the dry biomass (total, stems, and leaves), sugar content (total reducing sugars and sucrose eontents) and sugar yield (here defined as the product of total reducing sugars and stems dry biomass) functions of sweet sorghum. Sorghum dry biomass and sugar yield showed diminishing returns for each incremental change of nitrogen. The use of saline irrigation waters also led to yield reduction. Exception was sucrose content which increased with increasing levels of sodium in the soil. Nitrogen need decreased as the amount of sodium applied increased. Stem dry biomass, sucrose content, and sugar yield progressively increased with progress in the experiment. The effect could be attributed to the increase of the amount of irrigation applied throughout the years, thus increasing the leaching fraction which promoted salt leaching from the root zone, reduced the salinity stress, increased plant transpiration, nitrogen uptake and biomass yield.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10562004) the Natural Science Foundation of Jiangxi (Nos.0450035 and 0512021) the Science Foundation of Jiangxi Educational Department (No.[2006]3) the Oversea Returned Scholars Grant of China.
文摘By the nonlinear optimization theory, we predict the yield function of single BCC crystals in Hill's criterion form. Then we give a formula on the macroscopic yield function of a BCC polycrystal Ω under Sachs' model, where the volume average of the yield functions of all BCC crystallites in Ω is taken as the macroscopic yield function of the BCC polycrystal. In constructing the formula, we try to find the relationship among the macroscopic yield function, the orientation distribution function (ODF), and the single BCC crystal's plasticity. An expression for the yield stress of a uniaxial tensile problem is derived under Taylor's model in order to compare the expression with that of the macroscopic yield function.
基金Project(P2018-013)supported by the Open Foundation of State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘The equi-biaxial tensile test is often required for parameter identification of anisotropic yield function and it demands thespecial testing technique or device. Instead of the equi-biaxial tensile test, the plane strain test carried out with the traditional uniaxialtesting machine is suggested to provide the experimental data for calibration of anisotropic yield function. This simplified method byusing plane strain test was adopted to identify the parameters of Yld2000-2d yield function for 5xxx aluminum alloy and AlMgSialloy sheets. The predicted results of yield stresses, anisotropic coefficients and yield loci by the proposed method were very similarwith the experimental data and those by the equi-biaxial tensile test. It is validated that the plane strain test is effective to provideexperimental data instead of equi-biaxial tensile test for calibration of Yld2000-2d yield function.
基金the National Natural Science Foundation of China(No.51475003)the Beijing Municipal Natural Science Foundation of China(No.3152010)the Beijing Municipal Education Committee Science and Technology Program(No.KM201510009004)
文摘The combined loading tests of 5754 O aluminum alloy sheet are used to verify the yield function. Three yield functions are implemented into the commercial finite element model(FEM) code ABAQUS as a user material subroutine UMAT for the FEM simulation of the combined loading tests. The comparison of the simulating and experimental results shows that the modified Yld2000-2d yield function can describe the mechanical behavior of5754 O aluminum alloy sheet under combined loading paths reasonably while other three yield functions do not.The performance of the modified Yld2000-2d yield function on describing the mechanical behavior under combined loading paths is analyzed in detail. It is concluded that the modified Yld2000-2d yield function can be adopted to describe the deformation behavior of 5754 O aluminum alloy sheet for industrial applications.
基金supported by the National Natural Science Foundation of China (Grant Nos.51475003 and 51205004)Beijing Natural Science Foundation (Grant No.3152010)+1 种基金open project of "State Key Laboratory of Solidification Processing" of Northwestern Polytechnical University (No.SKLSP201635)Beijing Education Committee Science and Technology Program (Grant No.KM201510009004)
文摘A quadratic yield function which can describe the anisotropic behaviors of sheet metals with tension/compression symmetry and asymmetry is proposed.Five mechanical properties are adopted to determine the coefficients of each part of the yield function.For particular cases,the proposed yield function can be simplified to Mises or Hill’s quadratic yield function.The anisotropic mechanical properties are expressed by defining an angle between the current normalized principal stress space and the reference direction with the assumption of orthotropic anisotropy.The accuracy of the proposed yield function in describing the anisotropy under tension and compression is demonstrated.
文摘The calculation procedure of the continuum mechanics of textured polycrystals (CMTP) method is reviewed to estimate calculating time with various yield functions (YFs). A so called semi quadratic YF is proposed to eliminate time consuming numerical calculation and avoid the decrease of prediction precision. The reasonability of the new YF is proved by making the comparisons between predicted R values and earing behaviour for some materials and the experimental results.
基金supported by Science Foundation of Aeronautics of China
文摘A new Don-quadratic orthotropic yield function is developed in the present paper.It does not have those limitatioins which existing non-quadratic anisotropic yield functions have,such as being usable only for the plane stress problems and in-plane isotropic sheet metals,and that the directions of principal stress or the ex ponent in yield function can not be arbitrary,etc.Furthermore all of the material constants involved in this yield function can be determined by performing only uniaxial tension lest.This yield function contains three new parameters,of which each one is present for one principal plane of anisotropy.Their values can be.generally,selected to equal 3.Other methods to determine the value of these parmeters are discussed and given in this paper.From the regression estimate for the yield stress in five directions of several kinds of titanium metal sheet.it is obtained that the suitable value of exponent in yield function for titanium sheets is 6 or 8.This is confirmed from the use for several plastic deformation problems of titanium sheets.
文摘A new yield function taking effect of hydrostatic stress into account is presented through establishing and solving the functional equation satisfied by the yield function, and its characteristic is simple in form and strong in generality. In order to reveal its availability, a comparison is made between the results obtained with it and the experimental results of grey cast iron has be done, both seem to be in good agreement. At the same time, taking the yield function obtained here as a potential function, a new associative plastic constitutive equation taking effect of hydrostatic stress into account is built, and the plastic volume change ratio of plastic deformation is given.
文摘The anisotropy of stamped sheet metal exerts evident effects on the formability. Barlat six component yield function was introduced into the elastoplastic finite element formulation based on the principle of virtual velocity and the discrete Kirchhoff triangular element model. The flanging earing in cylindrical cup drawing process of circular sheet metal was numerically simulated. The influence of anisotropy on the forming process was studied.
基金Supported by the Foundation for Science and Technology (FCT) of Portugal (Nos. PTDC/AGR-AAM/66004/2006,SFRH/BD/ 60363/2009 and SFRH/BD/69185/2010)
文摘Soil salinization and non-point source pollution are among the most important and widespread environmental problems in European Mediterranean regions. Sweet sorghum (Sorghum bicolor (L.) Moench var. saccharatum) is a moderate to high salinity tolerant crop with low water and nutrient needs, seen as an alternative to grow in the water scarce regions. A three-year multifactorial study was conducted in southern Portugal to evaluate the combined effects of saline water and nitrogen application on the dry biomass (total, stems, and leaves), sugar content (total reducing sugars and sucrose eontents) and sugar yield (here defined as the product of total reducing sugars and stems dry biomass) functions of sweet sorghum. Sorghum dry biomass and sugar yield showed diminishing returns for each incremental change of nitrogen. The use of saline irrigation waters also led to yield reduction. Exception was sucrose content which increased with increasing levels of sodium in the soil. Nitrogen need decreased as the amount of sodium applied increased. Stem dry biomass, sucrose content, and sugar yield progressively increased with progress in the experiment. The effect could be attributed to the increase of the amount of irrigation applied throughout the years, thus increasing the leaching fraction which promoted salt leaching from the root zone, reduced the salinity stress, increased plant transpiration, nitrogen uptake and biomass yield.