Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to...Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to mitigate these losses by redirecting wakes away from downstream turbines.However,the effectiveness of yaw-based AWC is highly dependent on the accuracy of the underlying wake prediction models,which often require site-specific adjustments to reflect local atmospheric conditions and turbine characteristics.This paper presents an integrated,data-driven framework tomaximize wind farmpower output.Themethodology consists of three key stages.First,a practical simulation-assisted matching method is developed to estimate the True North Alignment(TNA)of each turbine using historical Supervisory Control and Data Acquisition(SCADA)data,resolving a common source of operational uncertainty.Second,key wake expansion parameters of the Floris engineering wake model are calibrated using site-specific SCADA power data,tailoring the model to the JibeiWind Farm in China.Finally,using this calibrated model,the derivative-free solver NOMAD is employed to determine the optimal yaw angle settings for an 11-turbine cluster under various wind conditions.Simulation studies,based on real operational scenarios,demonstrate the effectiveness of the proposed framework.The optimized yaw control strategies achieved total power output gains of up to 5.4%compared to the baseline zero-yaw operation under specific wake-inducing conditions.Crucially,the analysis reveals that using the site-specific calibrated model for optimization yields substantially better results than using a model with generic parameters,providing an additional power gain of up to 1.43%in tested scenarios.These findings underscore the critical importance of TNA estimation and site-specific model calibration for developing effective AWC strategies.The proposed integrated approach provides a robust and practical workflow for designing and pre-validating yaw control settings,offering a valuable tool for enhancing the economic performance of wind farms.展开更多
The optimal yawing angle of sun-tracking solar aircraft is tightly related to the solar azimuth angle,which results in a large arc flight path to dynamically track the sun position.However,the limited detection range ...The optimal yawing angle of sun-tracking solar aircraft is tightly related to the solar azimuth angle,which results in a large arc flight path to dynamically track the sun position.However,the limited detection range of payload usually requires solar aircraft to loiter over areas of interest for persistent surveillance missions.The large arc sun-tracking flight may cause the target area on the ground to be outside the maximum coverage area of payload.The present study therefore develops an optimal flight control approach for planning the flight path of sun-tracking solar aircraft within a mission region.The proposed method enables sun-tracking solar aircraft to maintain the optimal yawing angle most of the time during daylight flight,except when the aircraft reverses its direction by turning flight.For a circular region with a mission radius of 50km,the optimal flight trajectory and controls of an example K-shaped sun-tracking solar aircraft are investigated theoretically.Results demonstrate the effectiveness of the proposed approach to optimize the flight path of the sun-tracking aircraft under the given circular region while maximizing the battery input power.Furthermore,the effects of varying the mission radius on energy performance are explored numerically.It has been proved that both net energy and energy balance remain nearly constant as the radius constraint varies,which enables the solar aircraft to achieve perpetual flight at almost the same latitude as the large arc flight.The method and results presented in this paper can provide reference for the persistent operation of sun-tracking solar aircraft within specific mission areas.展开更多
基金the Science and Technology Project of China South Power Grid Co., Ltd. under Grant No. 036000KK52222044 (GDKJXM20222430).
文摘Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to mitigate these losses by redirecting wakes away from downstream turbines.However,the effectiveness of yaw-based AWC is highly dependent on the accuracy of the underlying wake prediction models,which often require site-specific adjustments to reflect local atmospheric conditions and turbine characteristics.This paper presents an integrated,data-driven framework tomaximize wind farmpower output.Themethodology consists of three key stages.First,a practical simulation-assisted matching method is developed to estimate the True North Alignment(TNA)of each turbine using historical Supervisory Control and Data Acquisition(SCADA)data,resolving a common source of operational uncertainty.Second,key wake expansion parameters of the Floris engineering wake model are calibrated using site-specific SCADA power data,tailoring the model to the JibeiWind Farm in China.Finally,using this calibrated model,the derivative-free solver NOMAD is employed to determine the optimal yaw angle settings for an 11-turbine cluster under various wind conditions.Simulation studies,based on real operational scenarios,demonstrate the effectiveness of the proposed framework.The optimized yaw control strategies achieved total power output gains of up to 5.4%compared to the baseline zero-yaw operation under specific wake-inducing conditions.Crucially,the analysis reveals that using the site-specific calibrated model for optimization yields substantially better results than using a model with generic parameters,providing an additional power gain of up to 1.43%in tested scenarios.These findings underscore the critical importance of TNA estimation and site-specific model calibration for developing effective AWC strategies.The proposed integrated approach provides a robust and practical workflow for designing and pre-validating yaw control settings,offering a valuable tool for enhancing the economic performance of wind farms.
基金the support of the National Natural Science Foundation of China(Nos.11902156 and 11672133)supported by the Fundamental Research Funds for the Central Universities,China(No.309201A8802)。
文摘The optimal yawing angle of sun-tracking solar aircraft is tightly related to the solar azimuth angle,which results in a large arc flight path to dynamically track the sun position.However,the limited detection range of payload usually requires solar aircraft to loiter over areas of interest for persistent surveillance missions.The large arc sun-tracking flight may cause the target area on the ground to be outside the maximum coverage area of payload.The present study therefore develops an optimal flight control approach for planning the flight path of sun-tracking solar aircraft within a mission region.The proposed method enables sun-tracking solar aircraft to maintain the optimal yawing angle most of the time during daylight flight,except when the aircraft reverses its direction by turning flight.For a circular region with a mission radius of 50km,the optimal flight trajectory and controls of an example K-shaped sun-tracking solar aircraft are investigated theoretically.Results demonstrate the effectiveness of the proposed approach to optimize the flight path of the sun-tracking aircraft under the given circular region while maximizing the battery input power.Furthermore,the effects of varying the mission radius on energy performance are explored numerically.It has been proved that both net energy and energy balance remain nearly constant as the radius constraint varies,which enables the solar aircraft to achieve perpetual flight at almost the same latitude as the large arc flight.The method and results presented in this paper can provide reference for the persistent operation of sun-tracking solar aircraft within specific mission areas.