Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and s...Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and socio-economic processes. Addressing the question of the use of xanthates without considering their toxicity, and their decomposition process and products would be ecologically and healthily less sustainable. To date, related information is still dispersed and less known to the public. Therefore, this work provides a comprehensive overview of the existing information on the essentiality, fate, ecotoxicity, and health effects of xanthates and associated compounds. According to available information from scientific, technical, and professional circles, xanthates are diverse, usually with a carbon chain of two to six carbon atoms. They play a crucial role in the sectors of the mining and mineral processing industry, agriculture, wastewater treatment, metal protection, rubber vulcanization, the pharmaceutical industry, and medicine. Xanthates’ degradation under different factors and mechanisms, which determine their fate in the environment, leads to the formation of toxic substances, mainly carbon disulfide, carbonyl sulfide, hydrogen sulfide, and hydrogen peroxide. Xanthates and xanthates degradation products are seriously hazardous to humans, animals, soil and aquatic organisms, enzymatic system, etc. Simultaneous exposure to xanthates and metals results in the magnification or reduction of their toxicity level, depending on the exposed organisms. Such toxicological dimensions should attract more scientific and public attention for more safe production, use, storage, and disposal of xanthates. Due to the high affinity of xanthates for metal, xanthates-modified compounds are efficient metal chelating agents. Such a property should be explored to develop potentially low-cost and effective alternatives for metal removal and recovery from contaminated media. The same applies to developing appropriate methods for the evaluation and management of the simultaneous presence of xanthates and metals in the environment.展开更多
Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating i...Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated. The process was studied taking into account such parameters as pH of water, precipitation time, xanthate dosage and storage time of BX. These products were found to be highly efficient in removing nickel. The residual con centration of nickel after treatment can be reduced to a value Of the ordor of 0. 01mg·1 ̄-1.展开更多
Three HPLC methods for the separation and determination of xanthate mixtures are described.The chromatographic behaviours,advantages and application ranges of various:methods have been discussed in detail.A calculatio...Three HPLC methods for the separation and determination of xanthate mixtures are described.The chromatographic behaviours,advantages and application ranges of various:methods have been discussed in detail.A calculation method for determining the results of individual xanthates from the complicated chromatographic peaks of xanthate mixtures is presented.The limits of detection are 0.15-2.0ng.展开更多
Due to the significant demand for xanthate treatment in mineral effluents,photocatalytic techniques have emerged as one of the most promising solutions.In this study,a high-performance TiO_(2)/Cuo/montmorillonite phot...Due to the significant demand for xanthate treatment in mineral effluents,photocatalytic techniques have emerged as one of the most promising solutions.In this study,a high-performance TiO_(2)/Cuo/montmorillonite photocatalyst was prepared.In this configuration,TiO_(2) was the classic photocatalytic material and CuO and montmorillonite were utilized to broaden the adsorption range of solar light and acted as carriers to support the photocatalyst.X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy were employed for the comprehensive characterization of the microstructure of the ternary photocatalyst.The results revealed that fine-sized TiO_(2) and Cuo nanoparticles were uniformly and tightly loaded on the montmorillonite layers.The photocatalytic properties of the photocatalyst were evaluated using sodium butyl xanthate as the target contaminant.For pristine TiO_(2),ultraviolet(UVv)light was required to effectively degrade sodium butyl xanthate.Meanwhile,the degradation reaction could be processed efficiently under visible light using the TiO_(2)/CuO/montmorillonite composite as the photocatalyst.Moreover,UV-visible diffuse reflectance spectroscopy,photoluminescence spectroscopy,and radical quench experiments were performed to elucidate the degradation process,and a possible degradation model and mechanism were proposed.展开更多
The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of li...The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.展开更多
Six kinds of galena with different impurities were synthesized and the effects of impurities on the floatability of galena were investigated. The thermodynamic and kinetic parameters on the galena surface were measure...Six kinds of galena with different impurities were synthesized and the effects of impurities on the floatability of galena were investigated. The thermodynamic and kinetic parameters on the galena surface were measured using microcalorimetry, and the adsorption configuration and energy of butyl xanthate on the surfaces of galena with different impurities were simulated by density functional theory. Flotation experiments showed that Ag and Bi significantly promoted the recovery of galena, while Zn, Sb, Mn, and Cu reduced the recovery of the flotation. Microthermokinetic results indicated that the absolute value of xanthate adsorption heat was directly proportional to the flotation recovery of galena. Adsorption heat and reaction rate coefficients of xanthate on galena containing Ag or Bi were larger than those on pure galena, but smaller on galena containing Cu or Sb. Additionally, the relationship between the heat of unsaturated adsorption of xanthate and the adsorption energy of impurity atom on galena surface was investigated.展开更多
The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tes...The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tests indicate that galena is electrochemically more active than pyrite and serves as an anode in galvanic combination with pyrite.The galvanic current density from a mixture of galena and pyrite is 4 times as high as the self corrosion current density of galena,which indicates that the corrosion rate of galena is accelerated.Adsorption tests show that the adsorption of butyl xanthate on galena surface is enhanced,and affected by a combination of pyrite-galena mixtures and conditioning time.Compared with individual mineral particles,galvanic interaction reduces the floatability difference between galena and pyrite.The flotation recovery of galena decreases while that of pyrite increases when two minerals are mixed together due to the influence of galvanic interaction on the formation of hydrophilic/hydrophobic product.The FTIR results show that the formation of dixanthogen on pyrite surface is depressed due to the galvanic interaction.展开更多
Electrochemical behavior of natural chalcopyrite in electrolyte solution containing 5×10?4 mol/L ethyl xanthate, and the effect of potential on the composition and characteristics of surface film were studied by...Electrochemical behavior of natural chalcopyrite in electrolyte solution containing 5×10?4 mol/L ethyl xanthate, and the effect of potential on the composition and characteristics of surface film were studied by cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The adsorption of xanthate (X?) occurred on the mineral surface at open-circuit potential (OCP). In the potential range from -0.11 to 0.2 V, the electrochemical reaction related to the formation of the hydrophobic film of dixanthogen (X2) occurred on natural chalcopyrite surface. This surface film had high coverage and large thickness at the potential of 0 V, but it had low coverage and small thickness at the potentials of 0.1 V and 0.2 V. Electrochemical activation started to occur when the potential was higher than 0.2 V, and the film of X2 transformed to plenty of Cu(Ⅱ) and Fe(Ⅲ) oxygen-containing species which had the porous and loose characteristics.展开更多
The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out t...The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.展开更多
Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bi...Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bisulfite/39wt%SO2 and caustic starch at different pH values.Raman spectroscopy,Fourier transform infrared(FTIR) spectroscopy,contact angle measurements,and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study.The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S^0,whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity.A conditioning of the mineral surface with ammonium bisulfite/39wt%SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption.However,this effect is diminished at pH ≥ 8,when an excess of starch is added during the preconditioning step.展开更多
The hydrophobic flocculation of marmatite fines in aqueous suspensions induced by butyl xanthate (KBX) and ammonium dibutyl dithiophosphate (ADD) was investigated using laser particle size analysis, microscopy ana...The hydrophobic flocculation of marmatite fines in aqueous suspensions induced by butyl xanthate (KBX) and ammonium dibutyl dithiophosphate (ADD) was investigated using laser particle size analysis, microscopy analysis, electrophoretic light scattering, contact angle measurement and infrared spectroscopy. The studies were performed on single minerals with size 〈20 μm by varying several parameters, including pH, collector concentration and kerosene addition. The results show that the floc fotation closely correlated with the size of flocs and the particle hydrophobicity, but was not lowered with increasing the particle surface charges due to collector adsorption. Under good operating conditions, the floc flotation of marmatite fines as a function of KBX and ADD can all reach floatability over 90%, in comparison with conventional flotation obtaining floatability of about 60%. It also has been found that a small addition of kerosene greatly improved the floc flotation because of the formation of oil films on marmatite particles. The results of FTIR spectra indicate that adsorption of the two collectors onto marmatite were chemical adsorption.展开更多
Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isoprop...Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.展开更多
Antimony (Sb) has received increasing environmental concerns due to its potential toxic and carcinogenic properties. In the present work, the electrocoagulation technique was used to treat the flotation wastewater f...Antimony (Sb) has received increasing environmental concerns due to its potential toxic and carcinogenic properties. In the present work, the electrocoagulation technique was used to treat the flotation wastewater from a heavy antimony polluted area, and the mechanism of removing Sb was also investigated. The study focused on the effect of operation parameters such as current density, initial pH and standing time on the Sb removal efficiency. Antimony concentration of below 1 mg/L in the treated wastewater was achieved, which meets the emission standards established by State Department of Environmental Protection and State Administration of China for Quality Supervision and Inspection and Quarantine of China.展开更多
This study investigated the effects of H_(2)O_(2)treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis...This study investigated the effects of H_(2)O_(2)treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis techniques.Flotation test results showed that H2O2 treatment influenced the flotation behaviors of the two minerals;however,flotation of pyrite was depressed more significantly than that of the chalcopyrite.Under well-controlled H_(2)O_(2)concentration,the selective separation of chalcopyrite from pyrite was realized at pH 9.0,at which the recovery of chalcopyrite was over 84%and that of pyrite was less than 24%.Zeta potential,UV-visible and IR spectrum measurements revealed that the collector interacted differently with the two minerals after H_(2)O_(2)treatment,and the surface of chalcopyrite adsorbed much greater amount of xanthate than that of the pyrite.IR and XPS analyses showed that the H_(2)O_(2)treatment significantly changed the surface properties of pyrite to very hydrophilic species that inhibited the adsorption of collector and thus depressed the floatability of pyrite.While,the surface of chalcopyrite remained mildly inert to H_(2)O_(2),as a result,the adsorption of xanthate and its oxidation to dixanthogen were very effective,which enhanced the flotation of chalcopyrite.展开更多
The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization...The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization of cuprite.Microflotation tests showed that the flotation recovery of pre-oxidized cuprite was nearly25% higher than that of direct sulfidization flotation,which indicates that the cuprite surface activity was enhanced after pre-oxidation by Cu(Ⅰ) species(weak affinity with sulfur ions) transformation to Cu(Ⅱ)species(strong affinity with sulfur ions).Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that pre-oxidation improved cuprite sulfidization and promoted the formation of copper-sulfide species on the cuprite surfaces.The mineral surface stability and thus,xanthate species adsorption on the cuprite surfaces were improved.The surface-adsorption measurements and infrared spectroscopy showed that a large amount of xanthate species was adsorbed onto the sulfidized cuprite surfaces after pre-oxidation,which enhanced the cuprite hydrophobicity and improved the cuprite flotation.展开更多
Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction...Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the twomineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimumcondition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BXimproved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals.The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX andthe surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface ofchalcopyrite after cyanide treatment is chemical adsorption.展开更多
In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the ...In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.展开更多
The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation...The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation results indicated that hemimorphite floats when the S(Ⅱ)–Pb(Ⅱ)–xanthate process is used; a maximum recovery of approximately 90% was obtained.Zeta-potential,contact-angle,scanning electron microscopy–energy-dispersive spectrometry(SEM–EDS),and diffuse-reflectance infrared Fourier transform spectroscopy(DRIFTS) measurements were used to characterize the activation products on the hemimorphite surface and their subsequent interaction with sodium butyl xanthate(SBX).The results showed that a Zn S coating formed on the hemimorphite surface after the sample was conditioned in an Na2 S solution.However,the formation of a Zn S coating on the hemimorphite surface did not improve hemimorphite flotation.With the subsequent addition of lead cations,Pb S species formed on the mineral surface.The formation of the Pb S species on the surface of hemimorphite significantly increased the adsorption capacity of SBX,forming lead xanthate(referred to as chemical adsorption) and leading to a substantial improvement in hemimorphite flotation.Our results indicate that the addition of lead cations is a critical step in the successful flotation of hemimorphite using the sulfidization–lead ion activation–xanthate process.展开更多
The objective of this study is to investigate the improvement possibilities of the floatability of galena with ultrasonic application in the presence of potassium ethyl xanthate(KEX). For this purpose, micro-flotation...The objective of this study is to investigate the improvement possibilities of the floatability of galena with ultrasonic application in the presence of potassium ethyl xanthate(KEX). For this purpose, micro-flotation experiments were carried out in addition to surface chemistry studies including zeta potential, contact angle, and bubble-particle attachment time measurements at various ultrasonic power levels and conditioning time. The results showed that, the maximum micro-flotation recovery of 77.5% was obtained with 30 W ultrasound power and 2 min conditioning time. In addition, more negative zeta potential values were obtained with ultrasound as well as higher contact angle and lower bubble-particle attachment time, which indicated the increased hydrophobicity of galena with ultrasound.展开更多
In the thermodynamics, for flotation separation of the SbAs bulk concentrate system there is no potential extent using butyl xanthate as collector. However in the kinetics, there exists 150 mV in reducing potential of...In the thermodynamics, for flotation separation of the SbAs bulk concentrate system there is no potential extent using butyl xanthate as collector. However in the kinetics, there exists 150 mV in reducing potential of butyl dixanthogen on the surface of stibnite and arsenopyrite. In this paper, their reducing kinetic difference of electrochemistry was confirmed by pure mineral flotation under controlled potential, the artificial SbAs bulk concentrate flotation separation and UVspectrophotometic analysis. The electrochemical separation of SbAs bulk concentrate has been carried out. qualified concentrate has been obtained. Sbconcentrate contains Sb 4944 %, As 044 %, Sbrecovery is 8783 % and Asconcentrate contains As 1096 %, Asrecovery is 9466 %.展开更多
文摘Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and socio-economic processes. Addressing the question of the use of xanthates without considering their toxicity, and their decomposition process and products would be ecologically and healthily less sustainable. To date, related information is still dispersed and less known to the public. Therefore, this work provides a comprehensive overview of the existing information on the essentiality, fate, ecotoxicity, and health effects of xanthates and associated compounds. According to available information from scientific, technical, and professional circles, xanthates are diverse, usually with a carbon chain of two to six carbon atoms. They play a crucial role in the sectors of the mining and mineral processing industry, agriculture, wastewater treatment, metal protection, rubber vulcanization, the pharmaceutical industry, and medicine. Xanthates’ degradation under different factors and mechanisms, which determine their fate in the environment, leads to the formation of toxic substances, mainly carbon disulfide, carbonyl sulfide, hydrogen sulfide, and hydrogen peroxide. Xanthates and xanthates degradation products are seriously hazardous to humans, animals, soil and aquatic organisms, enzymatic system, etc. Simultaneous exposure to xanthates and metals results in the magnification or reduction of their toxicity level, depending on the exposed organisms. Such toxicological dimensions should attract more scientific and public attention for more safe production, use, storage, and disposal of xanthates. Due to the high affinity of xanthates for metal, xanthates-modified compounds are efficient metal chelating agents. Such a property should be explored to develop potentially low-cost and effective alternatives for metal removal and recovery from contaminated media. The same applies to developing appropriate methods for the evaluation and management of the simultaneous presence of xanthates and metals in the environment.
文摘Water-insoluble bagasse xanthates were prepared by xanthation of alkalified celluloses by treating bagasse with chromium hydroxide reauction effluent.The removel of nickel from both test solutions and electroplating industrial wastewater samples with BX was investigated. The process was studied taking into account such parameters as pH of water, precipitation time, xanthate dosage and storage time of BX. These products were found to be highly efficient in removing nickel. The residual con centration of nickel after treatment can be reduced to a value Of the ordor of 0. 01mg·1 ̄-1.
文摘Three HPLC methods for the separation and determination of xanthate mixtures are described.The chromatographic behaviours,advantages and application ranges of various:methods have been discussed in detail.A calculation method for determining the results of individual xanthates from the complicated chromatographic peaks of xanthate mixtures is presented.The limits of detection are 0.15-2.0ng.
基金supported by the National Natural Science Foundation of China (Nos.52274255 and 51674067)National Key R&D Program of China (No.2020YFB2008702)+3 种基金Fundamental Research Funds for the Central Universities (Nos.N2301003,N2201008,N2201004,and N2301025)Liaoning Revitalization Talents Program (No.XLYC1807160)Postdoctoral Foundation of Northeastern University,Young Elite Scientists Sponsorship Program by CAST (No.2022QNRC001)China Postdoctoral Science Foundation (No.2022M720025).
文摘Due to the significant demand for xanthate treatment in mineral effluents,photocatalytic techniques have emerged as one of the most promising solutions.In this study,a high-performance TiO_(2)/Cuo/montmorillonite photocatalyst was prepared.In this configuration,TiO_(2) was the classic photocatalytic material and CuO and montmorillonite were utilized to broaden the adsorption range of solar light and acted as carriers to support the photocatalyst.X-ray diffraction,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy were employed for the comprehensive characterization of the microstructure of the ternary photocatalyst.The results revealed that fine-sized TiO_(2) and Cuo nanoparticles were uniformly and tightly loaded on the montmorillonite layers.The photocatalytic properties of the photocatalyst were evaluated using sodium butyl xanthate as the target contaminant.For pristine TiO_(2),ultraviolet(UVv)light was required to effectively degrade sodium butyl xanthate.Meanwhile,the degradation reaction could be processed efficiently under visible light using the TiO_(2)/CuO/montmorillonite composite as the photocatalyst.Moreover,UV-visible diffuse reflectance spectroscopy,photoluminescence spectroscopy,and radical quench experiments were performed to elucidate the degradation process,and a possible degradation model and mechanism were proposed.
基金Project(52204363)supported by the National Natural Science Foundation of ChinaProject(2024JJ8042)supported by the Hunan Natural Science Foundation,ChinaProject(22C0220)supported by the Education Department of Hunan Province,China。
文摘The lime-Cu^(2+)-xanthate process is commonly used for the flotation separation of sphalerite from pyrite.In this process,lime is added to the pulp to inhibit the floatability of pyrite.However,the excessive use of lime can result in pipeline blockage and inadequate recovery of associated precious metals.Therefore,it is necessary to develop new flotation process that minimizes or eliminates the use of lime.In this paper,a novel Fe^(3+)-Cu^(2+)-butyl xanthate process was developed as an alternative to lime for separating of sphalerite from pyrite.The flotation results indicated that with the artificially-mixed minerals,the flotation recovery of pyrite was lower than 16%and that of sphalerite was higher than 47%at pH 5.0−10.0.The zeta potential measurements revealed that ferric ion preferred to adsorb on pyrite,and copper ion displaced with zinc ion from the lattice at the interface of sphalerite.The wettability analyses indicated that the hydrophobicity of sphalerite surface increased apparently after being treated with Fe^(3+)-Cu^(2+)-BX,while the hydrophobicity of pyrite surface remained nearly unchanged.With XPS analysis,Cu-S bond and hydrophilic ferric hydroxide were detected separately on the surface of sphalerite and pyrite after conditioning with Fe^(3+)-Cu^(2+)-BX,which facilitated the flotation separation of sphalerite from pyrite with butyl xanthate collector.
基金Projects(51464006,51164001)supported by the National Natural Science Foundation of ChinaProject(GJR201147-12)supported by Guangxi Higher Education Institutes Talent Highland Innovation Team Scheme,ChinaProject(2012MDZD038)supported by the Key Scientific Research Project of Guangxi University for Nationalities,China
文摘Six kinds of galena with different impurities were synthesized and the effects of impurities on the floatability of galena were investigated. The thermodynamic and kinetic parameters on the galena surface were measured using microcalorimetry, and the adsorption configuration and energy of butyl xanthate on the surfaces of galena with different impurities were simulated by density functional theory. Flotation experiments showed that Ag and Bi significantly promoted the recovery of galena, while Zn, Sb, Mn, and Cu reduced the recovery of the flotation. Microthermokinetic results indicated that the absolute value of xanthate adsorption heat was directly proportional to the flotation recovery of galena. Adsorption heat and reaction rate coefficients of xanthate on galena containing Ag or Bi were larger than those on pure galena, but smaller on galena containing Cu or Sb. Additionally, the relationship between the heat of unsaturated adsorption of xanthate and the adsorption energy of impurity atom on galena surface was investigated.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject supported by the Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tests indicate that galena is electrochemically more active than pyrite and serves as an anode in galvanic combination with pyrite.The galvanic current density from a mixture of galena and pyrite is 4 times as high as the self corrosion current density of galena,which indicates that the corrosion rate of galena is accelerated.Adsorption tests show that the adsorption of butyl xanthate on galena surface is enhanced,and affected by a combination of pyrite-galena mixtures and conditioning time.Compared with individual mineral particles,galvanic interaction reduces the floatability difference between galena and pyrite.The flotation recovery of galena decreases while that of pyrite increases when two minerals are mixed together due to the influence of galvanic interaction on the formation of hydrophilic/hydrophobic product.The FTIR results show that the formation of dixanthogen on pyrite surface is depressed due to the galvanic interaction.
基金Project (50874030) supported by the National Natural Science Foundation of ChinaProject (N090602011) supported by the Fundamental Research Funds for the Central Universities, China Project (2009AA06Z104) supported by the National High-Tech Research and Development Program of China
文摘Electrochemical behavior of natural chalcopyrite in electrolyte solution containing 5×10?4 mol/L ethyl xanthate, and the effect of potential on the composition and characteristics of surface film were studied by cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The adsorption of xanthate (X?) occurred on the mineral surface at open-circuit potential (OCP). In the potential range from -0.11 to 0.2 V, the electrochemical reaction related to the formation of the hydrophobic film of dixanthogen (X2) occurred on natural chalcopyrite surface. This surface film had high coverage and large thickness at the potential of 0 V, but it had low coverage and small thickness at the potentials of 0.1 V and 0.2 V. Electrochemical activation started to occur when the potential was higher than 0.2 V, and the film of X2 transformed to plenty of Cu(Ⅱ) and Fe(Ⅲ) oxygen-containing species which had the porous and loose characteristics.
基金Project (51174229) supported by the National Natural Science Foundation of China
文摘The background pulp potential of zinc anode slime,and its influence on the occurrence of lead,silver and xanthate,were investigated with thermodynamic method.The thermodynamic conclusion and XRD analysis pointed out that in zinc anode slime,the thermodynamically stable compound of xanthate is dixanthogen,anglesite is the only mineral of lead,and kerargyrite is one of silver minerals occurring.Microflotation tests on single minerals of anglesite and kerargyrite in sulfuric acid solution by amyl dixanthogen indicated that dixanthogen has a much stronger collecting ability to kerargyrite than to anglesite.Molecular dynamic simulation indicated that amyl dixanthogen can only be adsorbed on the surface of kerargyrite in the presence of SO42-.The FTIR tests also verified the selective adsorption of amyl dixanthogen on the surface of kerargyrite in the presence of SO42-.
基金supported by Universidad Autónoma de San Luis Potosí(No.PROMEP/UASLP/12/CA15)
文摘Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between cnalcopyrite(CuFeS2) and n-isopropyl xanthate(X) in the presence of ammonium bisulfite/39wt%SO2 and caustic starch at different pH values.Raman spectroscopy,Fourier transform infrared(FTIR) spectroscopy,contact angle measurements,and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study.The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S^0,whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity.A conditioning of the mineral surface with ammonium bisulfite/39wt%SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption.However,this effect is diminished at pH ≥ 8,when an excess of starch is added during the preconditioning step.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject supported by the Foundation of State Key Laboratory of Comprehensive Utilization of Low-Grade Ores(Zijin Mining Group Co.,Ltd),China
文摘The hydrophobic flocculation of marmatite fines in aqueous suspensions induced by butyl xanthate (KBX) and ammonium dibutyl dithiophosphate (ADD) was investigated using laser particle size analysis, microscopy analysis, electrophoretic light scattering, contact angle measurement and infrared spectroscopy. The studies were performed on single minerals with size 〈20 μm by varying several parameters, including pH, collector concentration and kerosene addition. The results show that the floc fotation closely correlated with the size of flocs and the particle hydrophobicity, but was not lowered with increasing the particle surface charges due to collector adsorption. Under good operating conditions, the floc flotation of marmatite fines as a function of KBX and ADD can all reach floatability over 90%, in comparison with conventional flotation obtaining floatability of about 60%. It also has been found that a small addition of kerosene greatly improved the floc flotation because of the formation of oil films on marmatite particles. The results of FTIR spectra indicate that adsorption of the two collectors onto marmatite were chemical adsorption.
文摘Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates:commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm^-1 in the FTIR spectrum of the CXTFs.
基金supported by the Innovative Program of the Chinese Academy of Sciences (No. kzcx2-yw-102)the National Nature Science Foundation of China (No. 40525011, 40632011)
文摘Antimony (Sb) has received increasing environmental concerns due to its potential toxic and carcinogenic properties. In the present work, the electrocoagulation technique was used to treat the flotation wastewater from a heavy antimony polluted area, and the mechanism of removing Sb was also investigated. The study focused on the effect of operation parameters such as current density, initial pH and standing time on the Sb removal efficiency. Antimony concentration of below 1 mg/L in the treated wastewater was achieved, which meets the emission standards established by State Department of Environmental Protection and State Administration of China for Quality Supervision and Inspection and Quarantine of China.
基金Projects(51704329,51705540)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,China+1 种基金Project(B14034)supported by the National“111”Project,ChinaProject(2018TP1002)supported by the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘This study investigated the effects of H_(2)O_(2)treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis techniques.Flotation test results showed that H2O2 treatment influenced the flotation behaviors of the two minerals;however,flotation of pyrite was depressed more significantly than that of the chalcopyrite.Under well-controlled H_(2)O_(2)concentration,the selective separation of chalcopyrite from pyrite was realized at pH 9.0,at which the recovery of chalcopyrite was over 84%and that of pyrite was less than 24%.Zeta potential,UV-visible and IR spectrum measurements revealed that the collector interacted differently with the two minerals after H_(2)O_(2)treatment,and the surface of chalcopyrite adsorbed much greater amount of xanthate than that of the pyrite.IR and XPS analyses showed that the H_(2)O_(2)treatment significantly changed the surface properties of pyrite to very hydrophilic species that inhibited the adsorption of collector and thus depressed the floatability of pyrite.While,the surface of chalcopyrite remained mildly inert to H_(2)O_(2),as a result,the adsorption of xanthate and its oxidation to dixanthogen were very effective,which enhanced the flotation of chalcopyrite.
基金the Project funded by Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province (Grant No. YNWR-QNBJ-2018-051)。
文摘The direct sulfidization of cuprite is inefficient because cuprite is a copper-oxide mineral with a strong surface hydrophilicity.In this study,oxidant was used to modify cuprite surfaces to regulate the sulfidization of cuprite.Microflotation tests showed that the flotation recovery of pre-oxidized cuprite was nearly25% higher than that of direct sulfidization flotation,which indicates that the cuprite surface activity was enhanced after pre-oxidation by Cu(Ⅰ) species(weak affinity with sulfur ions) transformation to Cu(Ⅱ)species(strong affinity with sulfur ions).Zeta potential,scanning electron microscopy-energy dispersive X-ray spectroscopy,X-ray photoelectron spectroscopy,and time-of-flight secondary ion mass spectrometry results showed that pre-oxidation improved cuprite sulfidization and promoted the formation of copper-sulfide species on the cuprite surfaces.The mineral surface stability and thus,xanthate species adsorption on the cuprite surfaces were improved.The surface-adsorption measurements and infrared spectroscopy showed that a large amount of xanthate species was adsorbed onto the sulfidized cuprite surfaces after pre-oxidation,which enhanced the cuprite hydrophobicity and improved the cuprite flotation.
基金Project(2012BAB08B03)supported by the National Key Technologies R&D Program of China
文摘Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the twomineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimumcondition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BXimproved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals.The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX andthe surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface ofchalcopyrite after cyanide treatment is chemical adsorption.
基金Projects(51504053,51374079)supported by the National Natural Science Foundation of ChinaProject(2015M571324)supported by the Postdoctoral Science Foundation of China
文摘In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.
基金financially supported by the State Key Development Program for Basic Research of China (No.2014CB643402)the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources of Central South University
文摘The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation results indicated that hemimorphite floats when the S(Ⅱ)–Pb(Ⅱ)–xanthate process is used; a maximum recovery of approximately 90% was obtained.Zeta-potential,contact-angle,scanning electron microscopy–energy-dispersive spectrometry(SEM–EDS),and diffuse-reflectance infrared Fourier transform spectroscopy(DRIFTS) measurements were used to characterize the activation products on the hemimorphite surface and their subsequent interaction with sodium butyl xanthate(SBX).The results showed that a Zn S coating formed on the hemimorphite surface after the sample was conditioned in an Na2 S solution.However,the formation of a Zn S coating on the hemimorphite surface did not improve hemimorphite flotation.With the subsequent addition of lead cations,Pb S species formed on the mineral surface.The formation of the Pb S species on the surface of hemimorphite significantly increased the adsorption capacity of SBX,forming lead xanthate(referred to as chemical adsorption) and leading to a substantial improvement in hemimorphite flotation.Our results indicate that the addition of lead cations is a critical step in the successful flotation of hemimorphite using the sulfidization–lead ion activation–xanthate process.
基金the Research Fund of Istanbul University under grant FAB-2017-25658.
文摘The objective of this study is to investigate the improvement possibilities of the floatability of galena with ultrasonic application in the presence of potassium ethyl xanthate(KEX). For this purpose, micro-flotation experiments were carried out in addition to surface chemistry studies including zeta potential, contact angle, and bubble-particle attachment time measurements at various ultrasonic power levels and conditioning time. The results showed that, the maximum micro-flotation recovery of 77.5% was obtained with 30 W ultrasound power and 2 min conditioning time. In addition, more negative zeta potential values were obtained with ultrasound as well as higher contact angle and lower bubble-particle attachment time, which indicated the increased hydrophobicity of galena with ultrasound.
文摘In the thermodynamics, for flotation separation of the SbAs bulk concentrate system there is no potential extent using butyl xanthate as collector. However in the kinetics, there exists 150 mV in reducing potential of butyl dixanthogen on the surface of stibnite and arsenopyrite. In this paper, their reducing kinetic difference of electrochemistry was confirmed by pure mineral flotation under controlled potential, the artificial SbAs bulk concentrate flotation separation and UVspectrophotometic analysis. The electrochemical separation of SbAs bulk concentrate has been carried out. qualified concentrate has been obtained. Sbconcentrate contains Sb 4944 %, As 044 %, Sbrecovery is 8783 % and Asconcentrate contains As 1096 %, Asrecovery is 9466 %.