针对自行研制的磁悬浮隔振器进行自适应前馈控制,设计了基于滤波x最小均方(Filtered x Least Mean Square——滤波x-LMS)算法的控制律。为了将滤波x-LMS算法应用于带有非线性特性的磁悬浮隔振系统,对滤波x-LMS算法进行了改进。在磁悬浮...针对自行研制的磁悬浮隔振器进行自适应前馈控制,设计了基于滤波x最小均方(Filtered x Least Mean Square——滤波x-LMS)算法的控制律。为了将滤波x-LMS算法应用于带有非线性特性的磁悬浮隔振系统,对滤波x-LMS算法进行了改进。在磁悬浮隔振系统上进行振动主动控制实验,实验结果表明,该控制算法取得了良好的减振效果。展开更多
研究了通过次级通道阻尼补偿提高滤波x-最小均方(Least Mean Square;LMS)算法性能的实现方法,提出了一种自适应前馈等效阻尼补偿方案;将前馈补偿器与自适应前馈控制器设计相结合,设计了基于前馈等效阻尼补偿的改进滤波x-LMS算法,改进算...研究了通过次级通道阻尼补偿提高滤波x-最小均方(Least Mean Square;LMS)算法性能的实现方法,提出了一种自适应前馈等效阻尼补偿方案;将前馈补偿器与自适应前馈控制器设计相结合,设计了基于前馈等效阻尼补偿的改进滤波x-LMS算法,改进算法保持了滤波x-LMS算法结构简单、鲁棒性强等优点。以柔性悬臂梁前两阶模态振动为控制目标,分别采用两种算法进行了主动减振仿真实验,结果表明本文提出的改进滤波x-LMS算法具有更快的收敛速度。展开更多
Engine mount system affects the automobile NVH performance.Active mounts would achieve excellent vibration isolation and relative displacement control performance in a broad frequency bandwidth by outputting controlle...Engine mount system affects the automobile NVH performance.Active mounts would achieve excellent vibration isolation and relative displacement control performance in a broad frequency bandwidth by outputting controlled force to the mounting system.The actuator and control method of the active mounts determine the system performance.In this paper,an active mount based on the smart material,i.e.,Terfenol-D rod,is proposed,which mainly includes three parts:rubber spring,magnetostrictive actuator(MA),and hydraulic amplification mechanism(HAM).Dynamic model of the active mount is correspondingly established.A state feedback control method based on x-LMS(Least-Mean-Square)algorithm is proposed as well.Specifically,with the consideration of the unmeasurable state parameters in the active mounting system,an x-LMS state feedback controller with the system state as the reference signal is constructed by employing Sage-Husa Kalman filter to realize the state estimation of the active mounting system.Then a detailed analysis of the proposed control method is conducted,with deriving iterative formula of tap-weight vector.Sequentially,the problem of the dependence on the excitation signal in the x-LMS algorithm is addressed.The feasibility and capability of the proposed control method are verified and evaluated by simulation of a two-degree-offreedom active mounting system.展开更多
文摘针对自行研制的磁悬浮隔振器进行自适应前馈控制,设计了基于滤波x最小均方(Filtered x Least Mean Square——滤波x-LMS)算法的控制律。为了将滤波x-LMS算法应用于带有非线性特性的磁悬浮隔振系统,对滤波x-LMS算法进行了改进。在磁悬浮隔振系统上进行振动主动控制实验,实验结果表明,该控制算法取得了良好的减振效果。
文摘研究了通过次级通道阻尼补偿提高滤波x-最小均方(Least Mean Square;LMS)算法性能的实现方法,提出了一种自适应前馈等效阻尼补偿方案;将前馈补偿器与自适应前馈控制器设计相结合,设计了基于前馈等效阻尼补偿的改进滤波x-LMS算法,改进算法保持了滤波x-LMS算法结构简单、鲁棒性强等优点。以柔性悬臂梁前两阶模态振动为控制目标,分别采用两种算法进行了主动减振仿真实验,结果表明本文提出的改进滤波x-LMS算法具有更快的收敛速度。
基金National Natural Science Foundation of China(Grant No.52272392)Fundamental Research Funds for the Central Universities of China(Grant No.JD2019JGPY0018).
文摘Engine mount system affects the automobile NVH performance.Active mounts would achieve excellent vibration isolation and relative displacement control performance in a broad frequency bandwidth by outputting controlled force to the mounting system.The actuator and control method of the active mounts determine the system performance.In this paper,an active mount based on the smart material,i.e.,Terfenol-D rod,is proposed,which mainly includes three parts:rubber spring,magnetostrictive actuator(MA),and hydraulic amplification mechanism(HAM).Dynamic model of the active mount is correspondingly established.A state feedback control method based on x-LMS(Least-Mean-Square)algorithm is proposed as well.Specifically,with the consideration of the unmeasurable state parameters in the active mounting system,an x-LMS state feedback controller with the system state as the reference signal is constructed by employing Sage-Husa Kalman filter to realize the state estimation of the active mounting system.Then a detailed analysis of the proposed control method is conducted,with deriving iterative formula of tap-weight vector.Sequentially,the problem of the dependence on the excitation signal in the x-LMS algorithm is addressed.The feasibility and capability of the proposed control method are verified and evaluated by simulation of a two-degree-offreedom active mounting system.