利用软件wx AMPS模拟CIGS/Si异质结太电池的效率和不同工艺参数对电池性能的影响:前后端接触势垒分别为1.2 e V和0.21 e V,前(后)表面复合速率为1×107cm/s,选择功函数为5.4 e V的透明导电薄膜材料,p型CIGS的带隙和厚度为1.15 e ...利用软件wx AMPS模拟CIGS/Si异质结太电池的效率和不同工艺参数对电池性能的影响:前后端接触势垒分别为1.2 e V和0.21 e V,前(后)表面复合速率为1×107cm/s,选择功函数为5.4 e V的透明导电薄膜材料,p型CIGS的带隙和厚度为1.15 e V和3μm,并选择掺杂浓度为5×1016cm-3的n型硅片,最终模拟CIGS/Si异质结太阳电池的最佳效率为25.60%。希望该模拟数据为实际制备CIGS/Si异质结太电池作出正确的理论指导。展开更多
Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells.Specifically,the heterojunction structure possesses the advantages of efficient charge separation but suffers ...Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells.Specifically,the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination;the sandwich configuration is favorable for transferring carriers but requires complex fabrication process.Here,we have designed two thin-film polycrystalline solar cells with novel structures:sandwich CIGS and heterojunction perovskite,referring to the advantages of the architectures of sandwich perovskite(standard)and heterojunction CIGS(standard)solar cells,respectively.A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer.The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%,which is much higher than the standard heterojunction CIGS structure(18.48%).The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films(16.9%)than these typically utilizing thin and weak-doping/intrinsic perovskite films(9.6%).This concept of structure modulation proves to be useful and can be applicable for other solar cells.展开更多
Hole transporting layer(HTL) free organometal halide perovskite solar cells have shown great promise in simplifying device architecture,fabrication process and enhancing stability.However,the simple elimination of the...Hole transporting layer(HTL) free organometal halide perovskite solar cells have shown great promise in simplifying device architecture,fabrication process and enhancing stability.However,the simple elimination of the HTL from the standard sandwiched configuration suffers from relatively poor device performance;additionally,the mechanism of the HTL-free perovskite solar cell is still unclear.Herein,we applied a one-dimensional modeling program wxAMPS to investigate the planar HTL-free perovskite solar cells by adjusting the absorber thickness,doping and the absorber/back contact band alignment.The simulation results reveal the importance of the moderate absorber thickness as well as the p-doping perovskite rather than intrinsic as in sandwich structure to the overall device efficiency.In the meanwhile,reducing the mismatching of the absorber/back contact by using higher work function back contact material in replacement of commonly utilized Au electrode is more favorable to improve the device performance.Through optimizing,high performance HTL-free perovskite solar cell with efficiency approaching 17%could be achieved.This study is helpful in providing theoretical guidance for the design of HTL-free perovskite solar cells.展开更多
文摘利用软件wx AMPS模拟CIGS/Si异质结太电池的效率和不同工艺参数对电池性能的影响:前后端接触势垒分别为1.2 e V和0.21 e V,前(后)表面复合速率为1×107cm/s,选择功函数为5.4 e V的透明导电薄膜材料,p型CIGS的带隙和厚度为1.15 e V和3μm,并选择掺杂浓度为5×1016cm-3的n型硅片,最终模拟CIGS/Si异质结太阳电池的最佳效率为25.60%。希望该模拟数据为实际制备CIGS/Si异质结太电池作出正确的理论指导。
基金Project supported by the National High-Tech R&D Program of China(No.2015AA034601)the National Natural Science Foundation of China(Nos.91333122,61204064,51202067,51372082,51402106,11504107)+1 种基金the Ph,D.Programs Foundation of Ministry of Education of China(Nos.20120036120006,20130036110012)the Par-Eu Scholars Program,and the Fundamental Research Funds for the Central Universities
文摘Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells.Specifically,the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination;the sandwich configuration is favorable for transferring carriers but requires complex fabrication process.Here,we have designed two thin-film polycrystalline solar cells with novel structures:sandwich CIGS and heterojunction perovskite,referring to the advantages of the architectures of sandwich perovskite(standard)and heterojunction CIGS(standard)solar cells,respectively.A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer.The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%,which is much higher than the standard heterojunction CIGS structure(18.48%).The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films(16.9%)than these typically utilizing thin and weak-doping/intrinsic perovskite films(9.6%).This concept of structure modulation proves to be useful and can be applicable for other solar cells.
基金supported partially by the National High-tech R&D Program of China(863 Program,2015AA034601)the National Natural Science Foundation of China(91333122,61204064,51202067,51372082,51402106 and 11504107)+1 种基金PhD Programs Foundation of Ministry of Education of China(20120036120006 and 20130036110012)Par-Eu Scholars Program,and the Fundamental Research Funds for the Central Universities
文摘Hole transporting layer(HTL) free organometal halide perovskite solar cells have shown great promise in simplifying device architecture,fabrication process and enhancing stability.However,the simple elimination of the HTL from the standard sandwiched configuration suffers from relatively poor device performance;additionally,the mechanism of the HTL-free perovskite solar cell is still unclear.Herein,we applied a one-dimensional modeling program wxAMPS to investigate the planar HTL-free perovskite solar cells by adjusting the absorber thickness,doping and the absorber/back contact band alignment.The simulation results reveal the importance of the moderate absorber thickness as well as the p-doping perovskite rather than intrinsic as in sandwich structure to the overall device efficiency.In the meanwhile,reducing the mismatching of the absorber/back contact by using higher work function back contact material in replacement of commonly utilized Au electrode is more favorable to improve the device performance.Through optimizing,high performance HTL-free perovskite solar cell with efficiency approaching 17%could be achieved.This study is helpful in providing theoretical guidance for the design of HTL-free perovskite solar cells.