Passive bistatic radar detects targets by exploiting available local broadcasters and communication transmissions as illuminators, which are not designed for radar. The signal usually contains a time-varying structure...Passive bistatic radar detects targets by exploiting available local broadcasters and communication transmissions as illuminators, which are not designed for radar. The signal usually contains a time-varying structure, which may result in high-level range ambiguity sidelobes. Because the mismatched filter is effective in suppressing sidelobes, it can be used in a passive bistatic radar. However, due to the low signal-to-noise ratio in the reference signal, the sidelobe suppression performance seriously degrades in a passive bistatic radar system. To solve this problem, a novel mismatched filtering algorithm is developed using worst-case performance optimization. In this algorithm, the influence of the low energy level in the reference signal is taken into consideration, and a new cost function is built based on worst-case performance optimization. With this optimization, the mismatched filter weights can be obtained by minimizing the total energy of the ambiguity range sidelobes. Quantitative evaluations and simulation results demonstrate that the proposed algorithm can realize sidelobe suppression when there is a low-energy reference signal. Its effectiveness is proved using real data.展开更多
The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstru...The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.展开更多
In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a c...In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system.展开更多
Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and...Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and county economies-have seen their tellers’service quality and operational efficiency directly impact market competitiveness and sustainable development capabilities.This study examines teller performance management in rural commercial banks from a business management perspective.By analyzing structural issues in existing performance management systems and integrating theoretical frameworks with industry case studies,it proposes systematic optimization measures.The research aims to provide practical references for establishing scientific and efficient teller performance management systems in rural commercial banks,thereby enhancing service quality,strengthening talent support,and better serving the rural financial market.展开更多
To address the design challenges of helicopter hub central components under high-performance requirements,this paper conducts safe-life topology optimization design research considering fatigue performance for rotor h...To address the design challenges of helicopter hub central components under high-performance requirements,this paper conducts safe-life topology optimization design research considering fatigue performance for rotor hub central components under multi-load conditions,combined with helicopter fatigue strength engineering design theory.For dealing with the issues of derivative calculation difficulties when directly considering fatigue constraints in existing topology optimization methods,this study establishes a mathematical formulation suitable for structural topology optimization of hub central components by combining modified structural safety fatigue limits based on isolife curves.Then the sensitivity analysis of design variables is derived,and an optimization designmodel for typical main rotor hub central components is constructed.By controlling the safe-life equivalent stress of the hub central structure,the goal of managing structural fatigue life is achieved,providing new insights for long-life,high-reliability hub central component design.The paper presents a topology optimization case study of a typical five-armhub central component,completes optimized structure reconstruction and fatigue strength analysis,which validates the effectiveness of the proposed methodology.展开更多
Increasing the texture complexity of high-performance surfaces can enhance their antifriction properties by altering their distribution and retention of lubricating oils.When a fluid flows through a fish-scale texture...Increasing the texture complexity of high-performance surfaces can enhance their antifriction properties by altering their distribution and retention of lubricating oils.When a fluid flows through a fish-scale texture,a lubricating layer is formed,effectively reducing friction.In this study,a bionic fish-scale structure is proposed,and ceramic components are fabricated and analyzed using micro/nano additive-manufacturing technology.First,the effects of various parameters on the antifriction performance of the fish-scale texture under hydrodynamic lubrication conditions are investigated.Then,the pressure distribution of the oil film—including both positive and negative pressures—is simulated by adjusting parameters such as the angleα,ratio of textured area to total surface area,and depth of the fish-scale texture.The results indicate that for a textured area that accounts for 20%of the total surface,texture depth of 150μm,and angleαof 30°,the pressure differential reaches its maximum.Finally,based on the optimized parameters,the designed fish-scale structure is fabricated using micro/nano ceramic three-dimensional-printing technology.Friction and wear tests are conducted on the sintered samples.The experimental results align well with the simulation data,indicating that the structure can reduce the friction coefficient by approximately 15%,thereby significantly improving the antifriction performance.This study provides a valuable reference for the surface engineering of other high-performance functional structures.展开更多
ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization f...ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization features of.NET Framework,some performance optimization techniques in program design and ASP.NET cache technology to reduce the loading of server,and make the designed system work more efficiently.展开更多
Satellite constellation configuration design is a complicated and time-consuming simulation optimization problem. In this paper, a new method called the rapid method for satellite constellation performance calculation...Satellite constellation configuration design is a complicated and time-consuming simulation optimization problem. In this paper, a new method called the rapid method for satellite constellation performance calculation is developed by the Hermite interpolation technique to reduce the computing complication and time. The constellation configuration optimization model is established on the basis of the rapid performance calculation. To reduce the search space and enhance the optimization efficiency, this paper presents a new constellation optimization strategy based on the ordinal optimization (00) theory and expands the algorithm realization for constellation optimization including precise and crude models, ordered performance curves, selection rules and selected subsets. Two experiments about navigation constellation and space based surveillance system (SBSS) are carried out and the analysis of simulation results indicates that the ordinal optimization for satellite constellation configuration design is effective.展开更多
The rapid expansion of the Internet of Things(IoT)has led to the widespread adoption of sensor networks,with Long-Range Wide-Area Networks(LoRaWANs)emerging as a key technology due to their ability to support long-ran...The rapid expansion of the Internet of Things(IoT)has led to the widespread adoption of sensor networks,with Long-Range Wide-Area Networks(LoRaWANs)emerging as a key technology due to their ability to support long-range communication while minimizing power consumption.However,optimizing network performance and energy efficiency in dynamic,large-scale IoT environments remains a significant challenge.Traditional methods,such as the Adaptive Data Rate(ADR)algorithm,often fail to adapt effectively to rapidly changing network conditions and environmental factors.This study introduces a hybrid approach that leverages Deep Learning(DL)techniques,namely Long Short-Term Memory(LSTM)networks,and Machine Learning(ML)techniques,namely Artificial Neural Networks(ANNs),to optimize key network parameters such as Signal-to-Noise Ratio(SNR)and Received Signal Strength Indicator(RSSI).LSTM-ANN model trained on the“LoRaWAN Path Loss Dataset including Environmental Variables”from Medellín,Colombia,and the model demonstrated exceptional predictive accuracy,achieving an R2 score of 0.999,Mean Squared Error(MSE)of 0.041,Root Mean Squared Error(RMSE)of 0.203,and Mean Absolute Error(MAE)of 0.167,significantly outperforming traditional regression-based approaches.These findings highlight the potential of combining advanced ML and DL techniques to address the limitations of traditional optimization strategies in LoRaWAN.By providing a scalable and adaptive solution for large-scale IoT deployments,this work lays the foundation for real-world implementation,emphasizing the need for continuous learning frameworks to further enhance energy efficiency and network resilience in dynamic environments.展开更多
This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transfo...This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates. With this approach, airfoil shape is considered in terms of design variables. The optimization process is constructed by integrating several programs developed by author. The design variables include twist, taper ratio, point of taper initiation, blade root chord, and coefficients of the airfoil distribution function. Aerodynamic constraints consist of limits on power available in hover and forward flight. The trim condition must be attainable. This paper considers rotor blade configuration for the hover flight condition only, so that the required power in hover is chosen as the objective function of the optimization problem. Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance. The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%, which is a good improvement for rotor blade design.展开更多
Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damp...Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off.展开更多
Selective laser melting (SLM), as a rapid prototyping technology, has been widely used to manufacture high-performance metal components with complex structures, which vitally provides a broad platform for the developm...Selective laser melting (SLM), as a rapid prototyping technology, has been widely used to manufacture high-performance metal components with complex structures, which vitally provides a broad platform for the development and application of magnesium alloys. However, the poor laser formability of magnesium alloys has deleterious consequences in the application of SLM processing. This paper discusses the defect formation mechanisms during the SLM process and summarizes characteristics in terms of mechanical properties, oxidation and corrosion resistance. Current optimization schemes are reviewed from both macro and micro perspectives. Firstly, the relationship between process parameters and formability and material properties is clarified, and advanced optimization methods of the design of experiments, physical models, and machine learning are evaluated. Secondly, the effects of alloying elements, composite reinforcement, and post-treatment on the microstructure and properties of the SLMed magnesium alloy are reviewed. Finally, the future application development prospects are envisaged based on the comprehensive review. This work is significantly helpful to a better scientific understanding of SLMed magnesium alloy and puts forward some meaningful guiding opinions for the future work of magnesium alloy manufacturing.展开更多
A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is...A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is implemented and the global router is called CEE Gr.The CEE Gr is tested on MCNC benchmarks and the experimental results are promising.展开更多
The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple st...The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components.展开更多
The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str...The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.展开更多
A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a...A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method.展开更多
Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat...Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.展开更多
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu...This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.展开更多
Tuned Mass Dampers(TMDs)are often attached to a main structure to reduce vibration,and the TMDs’positions are important to affect the structural dynamic performance.However,the TMDs’positions and the material layout...Tuned Mass Dampers(TMDs)are often attached to a main structure to reduce vibration,and the TMDs’positions are important to affect the structural dynamic performance.However,the TMDs’positions and the material layout of the structure act on each other.This paper suggests a design optimization method by combining the topology optimization of the main structure and the layout of the attached TMDs under harmonic excitations.The main structure with the attached TMDs are modeled by the continuum FEA method to consider the change of TMDs’locations.Then they are optimized simultaneously by introducing a multi-level optimization frame,which includes the structural topology optimization and the optimal tuning of TMDs.The locations and damping parameters of TMDs are optimized in every step of the SIMP-based topology optimization of the main structure,so as to fully consider the interactions between each other to improve the dynamic performance.Numerical examples of cantilever structures are studied,and the results show that when the main structure and TMDs are optimized simultaneously,the modal strain energy is more concentrated compared with that obtained by the non-simultaneous optimization approach.Therefore,the dynamic compliance of the target mode is dramatically reduced.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61401526)the 111 Project+1 种基金China(No.B18039)the National Key Laboratory of Science Foundation of Science and Technology on Space Microwave,China(No.614241103030617)。
文摘Passive bistatic radar detects targets by exploiting available local broadcasters and communication transmissions as illuminators, which are not designed for radar. The signal usually contains a time-varying structure, which may result in high-level range ambiguity sidelobes. Because the mismatched filter is effective in suppressing sidelobes, it can be used in a passive bistatic radar. However, due to the low signal-to-noise ratio in the reference signal, the sidelobe suppression performance seriously degrades in a passive bistatic radar system. To solve this problem, a novel mismatched filtering algorithm is developed using worst-case performance optimization. In this algorithm, the influence of the low energy level in the reference signal is taken into consideration, and a new cost function is built based on worst-case performance optimization. With this optimization, the mismatched filter weights can be obtained by minimizing the total energy of the ambiguity range sidelobes. Quantitative evaluations and simulation results demonstrate that the proposed algorithm can realize sidelobe suppression when there is a low-energy reference signal. Its effectiveness is proved using real data.
基金National Natural Science Foundation of China(52261032,51861021,51661016)Science and Technology Plan of Gansu Province(21YF5GA074)+2 种基金Public Welfare Project of Zhejiang Natural Science Foundation(LGG22E010008)Wenzhou Basic Public Welfare Scientific Research Project(G2023020)Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071094 and 51979065).
文摘In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system.
文摘Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and county economies-have seen their tellers’service quality and operational efficiency directly impact market competitiveness and sustainable development capabilities.This study examines teller performance management in rural commercial banks from a business management perspective.By analyzing structural issues in existing performance management systems and integrating theoretical frameworks with industry case studies,it proposes systematic optimization measures.The research aims to provide practical references for establishing scientific and efficient teller performance management systems in rural commercial banks,thereby enhancing service quality,strengthening talent support,and better serving the rural financial market.
基金supported by the National Natural Science Foundation of China(Grant No.52375253)the Outstanding Youth Foundation of Shandong Provincial Natural Science Foundation(Grant No.ZR2024YQ036)+2 种基金the Shandong Provincial Key Research and Development Program(Grant No.2025****0306)the Aeronautical Science Foundation of China(Grant No.202400180Q3002)the Special Fund for the Taishan Scholars Program.
文摘To address the design challenges of helicopter hub central components under high-performance requirements,this paper conducts safe-life topology optimization design research considering fatigue performance for rotor hub central components under multi-load conditions,combined with helicopter fatigue strength engineering design theory.For dealing with the issues of derivative calculation difficulties when directly considering fatigue constraints in existing topology optimization methods,this study establishes a mathematical formulation suitable for structural topology optimization of hub central components by combining modified structural safety fatigue limits based on isolife curves.Then the sensitivity analysis of design variables is derived,and an optimization designmodel for typical main rotor hub central components is constructed.By controlling the safe-life equivalent stress of the hub central structure,the goal of managing structural fatigue life is achieved,providing new insights for long-life,high-reliability hub central component design.The paper presents a topology optimization case study of a typical five-armhub central component,completes optimized structure reconstruction and fatigue strength analysis,which validates the effectiveness of the proposed methodology.
基金supported by Shanghai Collaborative Innovation Project(Grant No.XTCX-KJ-2024-01)the National Natural Science Foundation of China(Grant No.52205493).
文摘Increasing the texture complexity of high-performance surfaces can enhance their antifriction properties by altering their distribution and retention of lubricating oils.When a fluid flows through a fish-scale texture,a lubricating layer is formed,effectively reducing friction.In this study,a bionic fish-scale structure is proposed,and ceramic components are fabricated and analyzed using micro/nano additive-manufacturing technology.First,the effects of various parameters on the antifriction performance of the fish-scale texture under hydrodynamic lubrication conditions are investigated.Then,the pressure distribution of the oil film—including both positive and negative pressures—is simulated by adjusting parameters such as the angleα,ratio of textured area to total surface area,and depth of the fish-scale texture.The results indicate that for a textured area that accounts for 20%of the total surface,texture depth of 150μm,and angleαof 30°,the pressure differential reaches its maximum.Finally,based on the optimized parameters,the designed fish-scale structure is fabricated using micro/nano ceramic three-dimensional-printing technology.Friction and wear tests are conducted on the sintered samples.The experimental results align well with the simulation data,indicating that the structure can reduce the friction coefficient by approximately 15%,thereby significantly improving the antifriction performance.This study provides a valuable reference for the surface engineering of other high-performance functional structures.
基金Supported by National High Technology Research and Development Program of China(2006AA10A310)Key Task Project in Scientific and Technological Research in Heilongjing Province(GB06B601)Innovation Fund in Daqing Hi-tech Zone(DQGX07YF012)~~
文摘ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization features of.NET Framework,some performance optimization techniques in program design and ASP.NET cache technology to reduce the loading of server,and make the designed system work more efficiently.
文摘Satellite constellation configuration design is a complicated and time-consuming simulation optimization problem. In this paper, a new method called the rapid method for satellite constellation performance calculation is developed by the Hermite interpolation technique to reduce the computing complication and time. The constellation configuration optimization model is established on the basis of the rapid performance calculation. To reduce the search space and enhance the optimization efficiency, this paper presents a new constellation optimization strategy based on the ordinal optimization (00) theory and expands the algorithm realization for constellation optimization including precise and crude models, ordered performance curves, selection rules and selected subsets. Two experiments about navigation constellation and space based surveillance system (SBSS) are carried out and the analysis of simulation results indicates that the ordinal optimization for satellite constellation configuration design is effective.
基金funded by King Saud University Researchers Supporting Project Number(RSPD2025R1007),King Saud University,Riyadh,Saudi Arabia.
文摘The rapid expansion of the Internet of Things(IoT)has led to the widespread adoption of sensor networks,with Long-Range Wide-Area Networks(LoRaWANs)emerging as a key technology due to their ability to support long-range communication while minimizing power consumption.However,optimizing network performance and energy efficiency in dynamic,large-scale IoT environments remains a significant challenge.Traditional methods,such as the Adaptive Data Rate(ADR)algorithm,often fail to adapt effectively to rapidly changing network conditions and environmental factors.This study introduces a hybrid approach that leverages Deep Learning(DL)techniques,namely Long Short-Term Memory(LSTM)networks,and Machine Learning(ML)techniques,namely Artificial Neural Networks(ANNs),to optimize key network parameters such as Signal-to-Noise Ratio(SNR)and Received Signal Strength Indicator(RSSI).LSTM-ANN model trained on the“LoRaWAN Path Loss Dataset including Environmental Variables”from Medellín,Colombia,and the model demonstrated exceptional predictive accuracy,achieving an R2 score of 0.999,Mean Squared Error(MSE)of 0.041,Root Mean Squared Error(RMSE)of 0.203,and Mean Absolute Error(MAE)of 0.167,significantly outperforming traditional regression-based approaches.These findings highlight the potential of combining advanced ML and DL techniques to address the limitations of traditional optimization strategies in LoRaWAN.By providing a scalable and adaptive solution for large-scale IoT deployments,this work lays the foundation for real-world implementation,emphasizing the need for continuous learning frameworks to further enhance energy efficiency and network resilience in dynamic environments.
基金co-supported by National Foundation for Science and Technology Development(NAFOSTED) of Vietnam (Project No. 107.04-2012.25)the Agency for Defense Development in the Republic of Korea under contract UD100048JDthe project KARI-University Partnership Program 2009-09-2
文摘This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates. With this approach, airfoil shape is considered in terms of design variables. The optimization process is constructed by integrating several programs developed by author. The design variables include twist, taper ratio, point of taper initiation, blade root chord, and coefficients of the airfoil distribution function. Aerodynamic constraints consist of limits on power available in hover and forward flight. The trim condition must be attainable. This paper considers rotor blade configuration for the hover flight condition only, so that the required power in hover is chosen as the objective function of the optimization problem. Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance. The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%, which is a good improvement for rotor blade design.
基金supported by the National Natural Science Foundation of China(Nos.5130519811372129)
文摘Optimization of the parameters of landing gear systems with double-stage air springs of catapult take-off carrier-based aircraft is here studied based on the mathematical equations of the classic dual mass spring-damper dynamic model.Certain standards for both take-off and landing performance are put forward.The contradictory factors between take-off and landing processes are analyzed.The optimization of oil in the pin area and the area near the rear oil hole is performed.Then these optimized parameters are used to assess the influence of the initial pressure of the low chamber,the ratio of the high chamber to the low chamber,and the tire inflation pressure on the performance of arresting landing and catapult take-off.The influences of these parameters on carrier-based aircraft and the aircraft-carrier on aircraft catapult take-off is also assessed.Based on the results of the simulation,respective take-off criteria must be drafted considering different types of aircraft and different take-off load cases,all of which must be matched to parameters relevant to catapult take-off.
基金support from the National Natural Science Foundation of China(Nos.52201105 and 52101124)the Fundamental Research Funds for the Central Universities in China(No.2021CDJQY-024)+1 种基金the Research Project from Chongqing Key Laboratory of Metal Ad-ditive Manufacturing(3D Printing)in Chongqing University(No.02090011044158)the Foundation of the State Key Laboratory of Mechanical Transmission(No.SKLMT-ZZKT-2022R03 andSKLMT-ZZKT-2022M12).
文摘Selective laser melting (SLM), as a rapid prototyping technology, has been widely used to manufacture high-performance metal components with complex structures, which vitally provides a broad platform for the development and application of magnesium alloys. However, the poor laser formability of magnesium alloys has deleterious consequences in the application of SLM processing. This paper discusses the defect formation mechanisms during the SLM process and summarizes characteristics in terms of mechanical properties, oxidation and corrosion resistance. Current optimization schemes are reviewed from both macro and micro perspectives. Firstly, the relationship between process parameters and formability and material properties is clarified, and advanced optimization methods of the design of experiments, physical models, and machine learning are evaluated. Secondly, the effects of alloying elements, composite reinforcement, and post-treatment on the microstructure and properties of the SLMed magnesium alloy are reviewed. Finally, the future application development prospects are envisaged based on the comprehensive review. This work is significantly helpful to a better scientific understanding of SLMed magnesium alloy and puts forward some meaningful guiding opinions for the future work of magnesium alloy manufacturing.
文摘A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is implemented and the global router is called CEE Gr.The CEE Gr is tested on MCNC benchmarks and the experimental results are promising.
基金supported by Science and Technology Project of Quzhou(Nos.2023K256,2023NC08,2022K41)Research Grants Program of Department of Education of Zhejiang Province(Nos.Y202455709,Y202456243)Hunan Province Key Field R&D Plan Project(No.2022GK2068).
文摘The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components.
基金supported by the National Natural Science Foundation of China(Grant 11172013)
文摘The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering.
基金Supported by National Science and Technology Major Project(Grant No.2015ZX04014021)
文摘A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)the Science Foundation of China University of Petroleum(KYJJ2012-05-28)
文摘Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.
基金supported by the Funds for Creative Research Groups of China(No.60821063)the State Key Program of National Natural Science of China(No.60534010)+3 种基金the National 973 Program of China(No.2009CB320604)the Funds of National Science of China(No.60674021,60804024)the 111 Project(No.B08015)the Funds of PhD program of MOE,China(No.20060145019)
文摘This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.
基金co-supported by the National Natural Science Foundation of China(Nos.51975380 and 52005377)China Postdoctoral Science Foundation,China(No.2020M681346)。
文摘Tuned Mass Dampers(TMDs)are often attached to a main structure to reduce vibration,and the TMDs’positions are important to affect the structural dynamic performance.However,the TMDs’positions and the material layout of the structure act on each other.This paper suggests a design optimization method by combining the topology optimization of the main structure and the layout of the attached TMDs under harmonic excitations.The main structure with the attached TMDs are modeled by the continuum FEA method to consider the change of TMDs’locations.Then they are optimized simultaneously by introducing a multi-level optimization frame,which includes the structural topology optimization and the optimal tuning of TMDs.The locations and damping parameters of TMDs are optimized in every step of the SIMP-based topology optimization of the main structure,so as to fully consider the interactions between each other to improve the dynamic performance.Numerical examples of cantilever structures are studied,and the results show that when the main structure and TMDs are optimized simultaneously,the modal strain energy is more concentrated compared with that obtained by the non-simultaneous optimization approach.Therefore,the dynamic compliance of the target mode is dramatically reduced.