As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address thes...As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.展开更多
The shell composed of large-scale parts is the essential component of mechanical structures in the aerospace,shipping,and railway industries.These workpieces are characterized by thin walls and weak rigidity,thus requ...The shell composed of large-scale parts is the essential component of mechanical structures in the aerospace,shipping,and railway industries.These workpieces are characterized by thin walls and weak rigidity,thus requiring an effective technology for high-performance machining.Accordingly,an embedded locally resonant metamaterial with double resonators is proposed and combined with the magnetic follow-up support technology to attenuate the vibration of thin-walled parts for the first time.The band structures and parametric adjustment laws are systematically investigated and validated by analytical calculation and finite element method,which proves the proposed model is broadband,lightweight,and flexible in low frequencies.Its characteristics,as well as the relatively simple structure,are unique advantages for thin-walled structure milling.Finally,mirror milling experiments have been performed to assess the slave module with the proposed substructure.From the results,the root mean square amplitude of the thin-walled workpiece with the combined device decreases by nearly 9%,which means that the performance has been improved by the combined device.Furthermore,this work provides an integrated and efficient solution for vibration suppression in thin-walled parts milling,which extends locally resonant metamaterials to practical engineering fields and helps to improve the status quo of mirror milling from the perspective of metamaterials.展开更多
The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a dia...The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a diameter of less than 3 mm by the rotary scan method,the measurement uncertainty of the cylindrical workpiece with a diameter of 3 mm and length of 50 mm which is measured by a roundness measuring machine,is evaluated according to GUM(Guide to the Expression of Uncertainty in Measurement)as an example.Since the uncertainty caused by the eccentricity of the measured workpiece is different with the dimension changing,the measurement uncertainty of cylindrical workpieces with other dimensions can be evaluated the same as the diameter of 3 mm but with different eccentricity.Measurement uncertainty caused by different eccentricities concerning the dimension of the measured cylindrical workpiece is set to simulate the evaluations.Compared to the target value of the measurement uncertainty of 0.1μm,the measurable dimensions of the cylindrical workpiece can be obtained.Experiments and analysis are presented to quantitatively evaluate the reliability of the rotary-scan method for the roundness measurement of cylindrical workpieces.展开更多
To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including g...To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.展开更多
A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine i...A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.展开更多
Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is desig...Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is designed to investigate the regenerative chatter suppression during the machining. Based on the analysis of typical structural components in the aerospace industry, a general complex thin-walled workpiece with fixture and damping constraint can be equivalent as a rectangular cantilever beam. On the basis of the equivalent models, natural frequency and mode shape function of the thin-walled workpiece is obtained according to the Euler-Bernoulli beam assumptions. Then, the displacement response function of the bending vibration of the beam is represented by the product of all the mode shape function and the generalized coordinate. Furthermore, a dynamic equation of the workpiece-fixture system considering the external damping factor is proposed using the Lagrangian method in terms of all the mode shape function and the generalized coordinate, and the response of system under the dynamic cutting force is calculated to evaluate the stability of the milling process under damping control. Finally, the feasibility and effectiveness of the proposed approach are validated by the impact hammer experiments and several machining tests. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.展开更多
The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the t...The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the twin robots cannot reach the same point to complete the process of workpiece frame positioning. Thus, a new method is proposed to solve the problem of coincidence between workpiece frames. Transformation between two robot base frames is initiated by measuring the coordinate values of three non-collinear calibration points. The relationship between the workpiece frame and that of the slave robot base frame is then determined according to the known transformation of two robot base frames, as well as the relationship between the workpiece frame and that of the master robot base frame. Only one robot is required to actually measure the coordinate values of the calibration points on the workpiece. This requirement is beneficial when one of the robots cannot reach and measure the calibration points. The coordinate values of the calibration points are derived by driving the robot hand to the points and recording the values of top center point(TCP) coordinates. The translation and rotation matrices relate either the two robot base frames or the workpiece and master robot. The coordinated are solved using the measured values of the calibration points according to the Cartesian transformation principle. An optimal method is developed based on exponential mapping of Lie algebra to ensure that the rotation matrix is orthogonal. Experimental results show that this method involves fewer steps, offers significant advantages in terms of operation and time-saving. A method used to synchronize workpiece frames in twin-robot system automatically is presented.展开更多
Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll wor...Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.展开更多
In order to achieve active grinding control, a novel numerical controlmicropositioning workpiece table with a resolution of 6 nm has been developed. The table is drivenby three piezoelectric actuators mounted on the b...In order to achieve active grinding control, a novel numerical controlmicropositioning workpiece table with a resolution of 6 nm has been developed. The table is drivenby three piezoelectric actuators mounted on the base. An elastic structure with three half-notchflexure hinges is designed to apply preload to the piezoelectric actuators. The position of flexurebinges is also elaborately designed with consideration to reduce the bending deformation of themoving part. Three capacitive sensors are used to form close loop control system. Considering thetable as a damped 3-DOF mass-spring system, the models of static and dynamic stiffness and errorowing to the action of external forces have been established. In order to make the table have highresolution and positioning accuracy, an error compensation algorithm is implemented by using theestablished models. The experimental testing has been carried out to verify the performance of theworkpiece table and the established models of the micropositioning workpiece table.展开更多
In industry,it is becoming common to detect and recognize industrial workpieces using deep learning methods.In this field,the lack of datasets is a big problem,and collecting and annotating datasets in this field is v...In industry,it is becoming common to detect and recognize industrial workpieces using deep learning methods.In this field,the lack of datasets is a big problem,and collecting and annotating datasets in this field is very labor intensive.The researchers need to perform dataset annotation if a dataset is generated by themselves.It is also one of the restrictive factors that the current method based on deep learning cannot expand well.At present,there are very few workpiece datasets for industrial fields,and the existing datasets are generated from ideal workpiece computer aided design(CAD)models,for which few actual workpiece images were collected and utilized.We propose an automatic industrial workpiece dataset generation method and an automatic ground truth annotation method.Included in our methods are three algorithms that we proposed:a point cloud based spatial plane segmentation algorithm to segment the workpieces in the real scene and to obtain the annotation information of the workpieces in the images captured in the real scene;a random multiple workpiece generation algorithm to generate abundant composition datasets with random rotation workpiece angles and positions;and a tangent vector based contour tracking and completion algorithm to get improved contour images.With our procedures,annotation information can be obtained using the algorithms proposed in this paper.Upon completion of the annotation process,a json format file is generated.Faster R-CNN(Faster R-convolutional neural network),SSD(single shot multibox detector)and YOLO(you only look once:unified,real-time object detection)are trained using the datasets proposed in this paper.The experimental results show the effectiveness and integrity of this dataset generation and annotation method.展开更多
An analytical solution of the unit pressure on a thin workpiece under compression has been obtained by using the inverse function of φ to the integral integral from 0 to x φ dx. Its result is basically the same as t...An analytical solution of the unit pressure on a thin workpiece under compression has been obtained by using the inverse function of φ to the integral integral from 0 to x φ dx. Its result is basically the same as the prevailing numerical formula integral from 0 to x φdx=∑√<sub>1</sub>-Δx<sub>1</sub>. However, the new integral is simpler and more convenient to use.展开更多
In order to obtain the desired mechanical properties of quenching and tempering workpieces, as well as reduce the cracking tendency and distortion, a program of controllable quenching was established. Furthermore, a c...In order to obtain the desired mechanical properties of quenching and tempering workpieces, as well as reduce the cracking tendency and distortion, a program of controllable quenching was established. Furthermore, a computer-aided quenching system (CAQ) was also developed. The application samples of the CAQ system showed satisfactory results.展开更多
Grinding is an energy-intensive process in which the heat generated can cause various types of thermal damage to workpiece.Many theoretical,empirical or numerical models have been developed to predict grinding tempera...Grinding is an energy-intensive process in which the heat generated can cause various types of thermal damage to workpiece.Many theoretical,empirical or numerical models have been developed to predict grinding temperature.However,these models are not directly applicable for coated workpieces.Tools or other parts are coated with hard materials like tungsten carbide,ceramics or polycrystalline diamond to increase their surface hardness and prolong their life expectancy.In this paper,an empirical model is proposed to predict the maximum grinding temperature of coated workpieces.Experimental and numerical studies are carried out to validate the model.The results indicated that the new model is able to accurately predict grinding temperature.展开更多
To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based...To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out.The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed,and the multi-objective optimization model was constructed.The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters.It was observed that surface roughness was mainly influenced by feed per tooth,and specific cutting energy was negatively correlated with feed per tooth,radial cutting depth and axial cutting depth,while cutting speed has a non-significant influence on specific cutting energy.The optimal combination of milling parameters with different priorities was obtained.The experimental results showed that the maximum relative error of measured and predicted values was 8.05%,and the model had high reliability,which ensured the low surface roughness and cutting energy consumption.It was of great guiding significance for the success of Al-Li alloy thin-wall milling with a high precision and energy efficiency.展开更多
In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuri...In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuring in hot spinning,such as crack,pileup,bulge and corrugation,were analyzed and the corresponding measures were put forward to avoid spinning defects,based on which a proper process scheme of hot spinning of TA15 alloy was obtained and the large-diameter and thin-walled cylindrical workpieces were formed with good quality.The results show that spinning temperature has distinct influence on forming quality of spun workpieces.The range of spinning temperature determines the spinnability of titanium alloy and the ununiformity of temperature distribution near the deformation zone leads to the formation of bulge.The reasonable heating method is that the deforming region is heated to the optimum temperature range of 600-700 ℃,the deformed region is heated continuously and a certain length of undeformed region is preheated.With the thickness-to-diameter ratio(t/D) of spun workpiece reducing to certain value(t/D<1%),surface bulge and corrugation is rather easier to come into being,which could be controlled through restraining diameter growth and employing smaller reduction rate and lower temperature in the optimum spinning temperature range.展开更多
To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic co...To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic compensation. To better understand the characteristics of the grinding machine modulated with micropositioning workpiece table, the dynamic model of the grinding system was established with modal synthesis and Lagrange's equation methods. The grinding system was divided into five subsystems. For each subsystem, the generalized kinematic and potential energies were obtained. Accordingly the dynamic model of the grinding system was given in the modal domain. The waviness of the grinding process was achieved based on the wheel and workpiece vibration. A nonlinear proportional integral derivative (PID) controller with differential trackers was developed to realize dynamic control. The simulation results show that the machining accuracy of the workpiece can be effectively improved by utilizing the micropositioning workpiece table to implement dynamic compensation. An experimental test was carried out to verify the proposed method, and the waviness of the workpiece can be reduced from 0.46 μm to 0.10 μm.展开更多
This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly t...This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly task is carried out by an industrial robot in a flexible production system.First,the depth image is thresholded according to the depth data of the workpiece surface so as to filter out the background interference.Second,a series of image processing and the feature recognition algorithms are executed to extract the outer contour features and locate the center point position.This image information,fed by the vision system,will drive the robot to achieve the positioning,approximately.Finally,the Hough circle detection algorithm is used to extract the features and the relevant parameters of the circular hole where the assembly would be done,on the color image,for accurate positioning.The experimental result shows that the positioning accuracy of this method is between 0.6-1.2 mm,in the used experimental system.The entire positioning process need not require complicated calibration,and the method is highly flexible.It is suitable for the automatic assembly tasks with multi-specification or in small batches,in a flexible production system.展开更多
An integration depending on a parameter to the compression of a thick workpiece has been obtained. For the conventional prevailing numerical formulaa definite functional relationship bet-ween and y is found. Therefore...An integration depending on a parameter to the compression of a thick workpiece has been obtained. For the conventional prevailing numerical formulaa definite functional relationship bet-ween and y is found. Therefore a parametric integration can be used to get an analytical solution. Take the slip line field for l/h= 0.121 as an example, the analytical solution is basically the same as the prevailing numerical one. It is justified theoretically that for the slip line field a parametric integration is perfectly possible for a satisfactory analytical solution.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12172248,12021002,12302022,and 12132010)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.22JCQNJC00780)IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology of China(No.202306)。
文摘As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172248,12021002,12302022,12132010)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.22JCQNJC00780)the IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology(Grant No.202306).
文摘The shell composed of large-scale parts is the essential component of mechanical structures in the aerospace,shipping,and railway industries.These workpieces are characterized by thin walls and weak rigidity,thus requiring an effective technology for high-performance machining.Accordingly,an embedded locally resonant metamaterial with double resonators is proposed and combined with the magnetic follow-up support technology to attenuate the vibration of thin-walled parts for the first time.The band structures and parametric adjustment laws are systematically investigated and validated by analytical calculation and finite element method,which proves the proposed model is broadband,lightweight,and flexible in low frequencies.Its characteristics,as well as the relatively simple structure,are unique advantages for thin-walled structure milling.Finally,mirror milling experiments have been performed to assess the slave module with the proposed substructure.From the results,the root mean square amplitude of the thin-walled workpiece with the combined device decreases by nearly 9%,which means that the performance has been improved by the combined device.Furthermore,this work provides an integrated and efficient solution for vibration suppression in thin-walled parts milling,which extends locally resonant metamaterials to practical engineering fields and helps to improve the status quo of mirror milling from the perspective of metamaterials.
基金supported by the National Defense Basic Scientific Research Program of China(Grant numbers JCKY2019427D002)。
文摘The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a diameter of less than 3 mm by the rotary scan method,the measurement uncertainty of the cylindrical workpiece with a diameter of 3 mm and length of 50 mm which is measured by a roundness measuring machine,is evaluated according to GUM(Guide to the Expression of Uncertainty in Measurement)as an example.Since the uncertainty caused by the eccentricity of the measured workpiece is different with the dimension changing,the measurement uncertainty of cylindrical workpieces with other dimensions can be evaluated the same as the diameter of 3 mm but with different eccentricity.Measurement uncertainty caused by different eccentricities concerning the dimension of the measured cylindrical workpiece is set to simulate the evaluations.Compared to the target value of the measurement uncertainty of 0.1μm,the measurable dimensions of the cylindrical workpiece can be obtained.Experiments and analysis are presented to quantitatively evaluate the reliability of the rotary-scan method for the roundness measurement of cylindrical workpieces.
基金Project (U0834002) supported by the Key Program of NSFC-Guangdong Joint Funds of ChinaProject (51005079) supported by the National Natural Science Foundation of China+1 种基金Project (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProject (10451064101005146) supported by the Natural Science Foundation of Guangdong Province,China
文摘To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.
文摘A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.
基金supported by the National Basic Research Program of China (Grant No. 2013CB035802)the 111 Project of China (Grant No. B13044)
文摘Milling of the thin-walled workpiece in the aerospace industry is a critical process due to the high flexibility of the workpiece. In this paper, a flexible fixture based on the magnetorheological (MR) fluids is designed to investigate the regenerative chatter suppression during the machining. Based on the analysis of typical structural components in the aerospace industry, a general complex thin-walled workpiece with fixture and damping constraint can be equivalent as a rectangular cantilever beam. On the basis of the equivalent models, natural frequency and mode shape function of the thin-walled workpiece is obtained according to the Euler-Bernoulli beam assumptions. Then, the displacement response function of the bending vibration of the beam is represented by the product of all the mode shape function and the generalized coordinate. Furthermore, a dynamic equation of the workpiece-fixture system considering the external damping factor is proposed using the Lagrangian method in terms of all the mode shape function and the generalized coordinate, and the response of system under the dynamic cutting force is calculated to evaluate the stability of the milling process under damping control. Finally, the feasibility and effectiveness of the proposed approach are validated by the impact hammer experiments and several machining tests. (C) 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.
基金Supported by International S&T Cooperation Program of China(Grant No.2012DFA70260)High-end CNC Machine and Basic Manufacturing Equipment of Chinese Key National Science and Technology(Grant No.2011ZX04014-081)
文摘The workpiece frames relative to each robot base frame should be known in advance for the proper operation of twin-robot nondestructive testing system. However, when two robots are separated from the workpieces, the twin robots cannot reach the same point to complete the process of workpiece frame positioning. Thus, a new method is proposed to solve the problem of coincidence between workpiece frames. Transformation between two robot base frames is initiated by measuring the coordinate values of three non-collinear calibration points. The relationship between the workpiece frame and that of the slave robot base frame is then determined according to the known transformation of two robot base frames, as well as the relationship between the workpiece frame and that of the master robot base frame. Only one robot is required to actually measure the coordinate values of the calibration points on the workpiece. This requirement is beneficial when one of the robots cannot reach and measure the calibration points. The coordinate values of the calibration points are derived by driving the robot hand to the points and recording the values of top center point(TCP) coordinates. The translation and rotation matrices relate either the two robot base frames or the workpiece and master robot. The coordinated are solved using the measured values of the calibration points according to the Cartesian transformation principle. An optimal method is developed based on exponential mapping of Lie algebra to ensure that the rotation matrix is orthogonal. Experimental results show that this method involves fewer steps, offers significant advantages in terms of operation and time-saving. A method used to synchronize workpiece frames in twin-robot system automatically is presented.
文摘Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.
基金This project is supported by National Natural Science Foundation of China(No.50275104)
文摘In order to achieve active grinding control, a novel numerical controlmicropositioning workpiece table with a resolution of 6 nm has been developed. The table is drivenby three piezoelectric actuators mounted on the base. An elastic structure with three half-notchflexure hinges is designed to apply preload to the piezoelectric actuators. The position of flexurebinges is also elaborately designed with consideration to reduce the bending deformation of themoving part. Three capacitive sensors are used to form close loop control system. Considering thetable as a damped 3-DOF mass-spring system, the models of static and dynamic stiffness and errorowing to the action of external forces have been established. In order to make the table have highresolution and positioning accuracy, an error compensation algorithm is implemented by using theestablished models. The experimental testing has been carried out to verify the performance of theworkpiece table and the established models of the micropositioning workpiece table.
文摘In industry,it is becoming common to detect and recognize industrial workpieces using deep learning methods.In this field,the lack of datasets is a big problem,and collecting and annotating datasets in this field is very labor intensive.The researchers need to perform dataset annotation if a dataset is generated by themselves.It is also one of the restrictive factors that the current method based on deep learning cannot expand well.At present,there are very few workpiece datasets for industrial fields,and the existing datasets are generated from ideal workpiece computer aided design(CAD)models,for which few actual workpiece images were collected and utilized.We propose an automatic industrial workpiece dataset generation method and an automatic ground truth annotation method.Included in our methods are three algorithms that we proposed:a point cloud based spatial plane segmentation algorithm to segment the workpieces in the real scene and to obtain the annotation information of the workpieces in the images captured in the real scene;a random multiple workpiece generation algorithm to generate abundant composition datasets with random rotation workpiece angles and positions;and a tangent vector based contour tracking and completion algorithm to get improved contour images.With our procedures,annotation information can be obtained using the algorithms proposed in this paper.Upon completion of the annotation process,a json format file is generated.Faster R-CNN(Faster R-convolutional neural network),SSD(single shot multibox detector)and YOLO(you only look once:unified,real-time object detection)are trained using the datasets proposed in this paper.The experimental results show the effectiveness and integrity of this dataset generation and annotation method.
文摘An analytical solution of the unit pressure on a thin workpiece under compression has been obtained by using the inverse function of φ to the integral integral from 0 to x φ dx. Its result is basically the same as the prevailing numerical formula integral from 0 to x φdx=∑√<sub>1</sub>-Δx<sub>1</sub>. However, the new integral is simpler and more convenient to use.
文摘In order to obtain the desired mechanical properties of quenching and tempering workpieces, as well as reduce the cracking tendency and distortion, a program of controllable quenching was established. Furthermore, a computer-aided quenching system (CAQ) was also developed. The application samples of the CAQ system showed satisfactory results.
基金the Shanghai Special Development Project of Major Equipment Technologies(No. 0706014)the Key Scientific Research Project of Shanghai Ministry of Science and Technology(No. 021111125)
文摘Grinding is an energy-intensive process in which the heat generated can cause various types of thermal damage to workpiece.Many theoretical,empirical or numerical models have been developed to predict grinding temperature.However,these models are not directly applicable for coated workpieces.Tools or other parts are coated with hard materials like tungsten carbide,ceramics or polycrystalline diamond to increase their surface hardness and prolong their life expectancy.In this paper,an empirical model is proposed to predict the maximum grinding temperature of coated workpieces.Experimental and numerical studies are carried out to validate the model.The results indicated that the new model is able to accurately predict grinding temperature.
基金This research is supported by the National Natural Science Foundation of China(Grant Nos.51475087 and 51304105)the Natural Science Foundation of Liaoning Province(Grant No.20180550167)+1 种基金the Key Projects of Liaoning Province(Grant Nos.LJ2019ZL005 and LJ2017ZL001)the Oversea Training Project of High Level Innovation Team of Liaoning Province(Grant No.2018LNGXGJWPY-ZD001).
文摘To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out.The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed,and the multi-objective optimization model was constructed.The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters.It was observed that surface roughness was mainly influenced by feed per tooth,and specific cutting energy was negatively correlated with feed per tooth,radial cutting depth and axial cutting depth,while cutting speed has a non-significant influence on specific cutting energy.The optimal combination of milling parameters with different priorities was obtained.The experimental results showed that the maximum relative error of measured and predicted values was 8.05%,and the model had high reliability,which ensured the low surface roughness and cutting energy consumption.It was of great guiding significance for the success of Al-Li alloy thin-wall milling with a high precision and energy efficiency.
文摘In order to form large-diameter thin-wall cylindrical workpieces of TA15 titanium alloy,tube hot spinning experiments of the alloy were conducted on a CNC hot spinning machine.The causes of some forming defects occuring in hot spinning,such as crack,pileup,bulge and corrugation,were analyzed and the corresponding measures were put forward to avoid spinning defects,based on which a proper process scheme of hot spinning of TA15 alloy was obtained and the large-diameter and thin-walled cylindrical workpieces were formed with good quality.The results show that spinning temperature has distinct influence on forming quality of spun workpieces.The range of spinning temperature determines the spinnability of titanium alloy and the ununiformity of temperature distribution near the deformation zone leads to the formation of bulge.The reasonable heating method is that the deforming region is heated to the optimum temperature range of 600-700 ℃,the deformed region is heated continuously and a certain length of undeformed region is preheated.With the thickness-to-diameter ratio(t/D) of spun workpiece reducing to certain value(t/D<1%),surface bulge and corrugation is rather easier to come into being,which could be controlled through restraining diameter growth and employing smaller reduction rate and lower temperature in the optimum spinning temperature range.
基金Supported by National Natural Science Foundation of China ( No. 50275104) .
文摘To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic compensation. To better understand the characteristics of the grinding machine modulated with micropositioning workpiece table, the dynamic model of the grinding system was established with modal synthesis and Lagrange's equation methods. The grinding system was divided into five subsystems. For each subsystem, the generalized kinematic and potential energies were obtained. Accordingly the dynamic model of the grinding system was given in the modal domain. The waviness of the grinding process was achieved based on the wheel and workpiece vibration. A nonlinear proportional integral derivative (PID) controller with differential trackers was developed to realize dynamic control. The simulation results show that the machining accuracy of the workpiece can be effectively improved by utilizing the micropositioning workpiece table to implement dynamic compensation. An experimental test was carried out to verify the proposed method, and the waviness of the workpiece can be reduced from 0.46 μm to 0.10 μm.
文摘This paper proposes an uncalibrated workpiece positioning method for peg-in-hole assembly of a device using an industrial robot.Depth images are used to identify and locate the workpieces when a peg-in-hole assembly task is carried out by an industrial robot in a flexible production system.First,the depth image is thresholded according to the depth data of the workpiece surface so as to filter out the background interference.Second,a series of image processing and the feature recognition algorithms are executed to extract the outer contour features and locate the center point position.This image information,fed by the vision system,will drive the robot to achieve the positioning,approximately.Finally,the Hough circle detection algorithm is used to extract the features and the relevant parameters of the circular hole where the assembly would be done,on the color image,for accurate positioning.The experimental result shows that the positioning accuracy of this method is between 0.6-1.2 mm,in the used experimental system.The entire positioning process need not require complicated calibration,and the method is highly flexible.It is suitable for the automatic assembly tasks with multi-specification or in small batches,in a flexible production system.
文摘An integration depending on a parameter to the compression of a thick workpiece has been obtained. For the conventional prevailing numerical formulaa definite functional relationship bet-ween and y is found. Therefore a parametric integration can be used to get an analytical solution. Take the slip line field for l/h= 0.121 as an example, the analytical solution is basically the same as the prevailing numerical one. It is justified theoretically that for the slip line field a parametric integration is perfectly possible for a satisfactory analytical solution.