Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes...Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.展开更多
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper th...Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.展开更多
A novel block–particle discrete-element simulation method that matches the double medium of overlying rock(OLR)and loose layer(LSL)in coal mining is developed in this study.This method achieves the collaborative fail...A novel block–particle discrete-element simulation method that matches the double medium of overlying rock(OLR)and loose layer(LSL)in coal mining is developed in this study.This method achieves the collaborative failure characteristics of mining damage under the conduction of double media between the OLR and LSL by combining the self-weight stress loading of the LSL and the breakage morphology of the bedrock top.Based on this,the conduction law of high-strength mining damage in the double medium in a western mining area is simulated and analyzed.The combining effect of the OLR breakage morphology and LSL characteristics on the surface-subsidence characteristics is analyzed and verified based on on-site measurements.The results indicate that the OLR is guided by the“double-control layer and thick-soft rock buffer layer”and shows“grouping subsidence”,whereas the surface forms collaborative subsidence with the thick-soft rock buffer layer.In the ultra-full mining stage,the surface presents an“asymmetric inverted trapezoidal”subsidence trough shape.The simulation results agree well the on-site measurements in terms of the surface-subsidence and bedrock-subsidence coefficients.The proposed simulation method provides a scientific approach for investigating the micro-conduction mechanism of mining damage under the effect of high-strength mining in western mining areas.It will benefit future investigations pertaining to the characteristics of OLR breakage and surface subsidence under conditions such as LSL thickness and proportion.展开更多
The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Struc...The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block.The Triassic fault zone,with a total length of about 720 km between the Dabie and Sulu orogens,exhibited an apparent sinistral offset of approximately 300 km along the TLFZ.The second stage of sinistral movement occurred in the earliest Late Jurassic,reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay,as well as forming a significant portion of the Dunhua-Mishan fault zone.The third stage of sinistral movement,in the earliest Early Cretaceous,was the most intense strike-slip movement of the Mesozoic,leading to the complete linkage of the TLFZ.This stage included further northward propagation of the southern-middle segment,both southward and northward propagation of the Dunhua-Mishan fault zone,as well as the formation of the entire Yilan-Yitong fault zone.The fourth stage,in the earliest Late Cretaceous,involved the reactivation of the entire TLFZ.Following its Triassic origin due to the indentation collision,the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol-Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous.The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone(>1000 km long)forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.展开更多
The mining height of a coal seam is a critical factor influencing the detachment,collapse,and formation of the collapse angle of the strata during strata movement.To clarify the mechanism by which mining height affect...The mining height of a coal seam is a critical factor influencing the detachment,collapse,and formation of the collapse angle of the strata during strata movement.To clarify the mechanism by which mining height affects strata movement characteristics,a physical model experiment was conducted based on the geological conditions of the Panel 122104 in Caojiatan Coal Mine in Shaanxi.The experiment examined strata movement at mining heights of 1 m and 10 m,identifying differences in detachment,collapse behavior,and collapse angles under these two conditions.The results indicate the following:Delamination range directly governs collapse patterns,with higher stress concentration accelerating delamination initiation and expanding affected zones.1 m mining height exhibits a“superposed fixed beam”structure with lower strength compared to the“fixed beam+cantilever beam”configuration under 10 m height.A model estimating collapse step shows 9.13%average error.Strata structure dictates collapse angle mechanisms:Pseudo-plastic deformation under 1 m height determines collapse angle through vertical tensile stress boundaries,whereas 10 m height exhibits brittle fracture behavior with collapse angles approximating fracture angles.Periodic collapse volume above working face directly correlates with mine pressure intensity and is positively correlated with the caving step distance,collapse angle,and caving range.These parameters show higher values under 10 m mining height,resulting in more pronounced mine pressure manifestations compared to 1 m conditions.展开更多
Flexible circuit switches have been widely used in electronic devices due to their outstanding flexibility and operability.In order to expand the types of flexible circuit switch materials,we develop a unique composit...Flexible circuit switches have been widely used in electronic devices due to their outstanding flexibility and operability.In order to expand the types of flexible circuit switch materials,we develop a unique composite material,which integrates a photoresponsive flexible substrate derived from a photoreactive coordination polymer(CP)with an elastic conductive adhesive tape(CAT)in this work.The photoreactive CP{[Cd(2,6-bpvn)(3,5-DBB)_(2)]·DMF}_(n)(1)is prepared through solvothermal reaction of Cd(NO_(3))_(2)·4H_(2)O with 2,6-bis((E)-2-(pyridin-4-yl)vinyl)naphthalene(2,6-bpvn)and 3,5-dibromobenzoic acid(3,5-HDBB).Upon irradiation with UV light,crystals of 1 can undergo[2+2]photocycloaddition reaction and exhibit photomechanical movements.The crystalline powder of 1 can be uniformly distributed in polyvinyl alcohol(PVA)to generate the composite film 1-PVA.After pasting a piece of CAT on the surface of a 1-PVA film,a conductive two-layer film of 1-PVA/CAT can be fabricated.This film bends rapidly upon UV light exposure,connecting the circuit and causing the bulb to light up.When the light source is removed,it reverts to its initial state and the circuit is disconnected and the bulb is extinguished.This process can be cycled at least 100 times,achieving precise turn-on and turn-off performances of the photocontrollable circuit switch.展开更多
The successful penetration of government,corporate,and organizational IT systems by state and non-state actors deploying APT vectors continues at an alarming pace.Advanced Persistent Threat(APT)attacks continue to pos...The successful penetration of government,corporate,and organizational IT systems by state and non-state actors deploying APT vectors continues at an alarming pace.Advanced Persistent Threat(APT)attacks continue to pose significant challenges for organizations despite technological advancements in artificial intelligence(AI)-based defense mechanisms.While AI has enhanced organizational capabilities for deterrence,detection,and mitigation of APTs,the global escalation in reported incidents,particularly those successfully penetrating critical government infrastructure has heightened concerns among information technology(IT)security administrators and decision-makers.Literature review has identified the stealthy lateral movement(LM)of malware within the initially infected local area network(LAN)as a significant concern.However,current literature has yet to propose a viable approach for resource-efficient,real-time detection of APT malware lateral movement within the initially compromised LAN following perimeter breach.Researchers have suggested the nature of the dataset,optimal feature selection,and the choice of machine learning(ML)techniques as critical factors for detection.Hence,the objective of the research described here was to successfully demonstrate a simplified lightweight ML method for detecting the LM of APT vectors.While the nearest detection rate achieved in the LM domain within LAN was 99.89%,as reported in relevant studies,our approach surpassed it,with a detection rate of 99.95%for the modified random forest(RF)classifier for dataset 1.Additionally,our approach achieved a perfect 100%detection rate for the decision tree(DT)and RF classifiers with dataset 2,a milestone not previously reached in studies within this domain involving two distinct datasets.Using the ML life cycle methodology,we deployed K-nearest neighbor(KNN),support vector machine(SVM),DT,and RF on three relevant datasets to detect the LM of APTs at the affected LAN prior to data exfiltration/destruction.Feature engineering presented four critical APT LM intrusion detection(ID)indicators(features)across the three datasets,namely,the source port number,the destination port number,the packets,and the bytes.This study demonstrates the effectiveness of lightweight ML classifiers in detecting APT lateral movement after network perimeter breach.It contributes to the field by proposing a non-intrusive network detection method capable of identifying APT malware before data exfiltration,thus providing an additional layer of organizational defense.展开更多
Root resorption is a significant complication in orthodontic treatment,with thin roots and reciprocal movement being recognized as high-risk factors.This paper reports a case of a 19-year-old female patient who underw...Root resorption is a significant complication in orthodontic treatment,with thin roots and reciprocal movement being recognized as high-risk factors.This paper reports a case of a 19-year-old female patient who underwent orthodontic treatment for dental irregularity.The patient had thin roots in the maxillary lateral incisors 12 and 22.During treatment,tooth 22 experienced reciprocal movement of labial expansion followed by retraction,while tooth 12 adopted passive ligation to reduce reciprocal movement.After 23 months of straight-wire extraction treatment,good occlusal relationships were achieved,but significant root resorption occurred in teeth 12 and 22,with tooth 22 showing more severe resorption.This case confirms the synergistic effect between thin roots and reciprocal movement,demonstrating that thin roots are more sensitive to reciprocal movement stimulation,producing a synergistic amplification effect.Additionally,standardized nursing guidance and patient compliance management play important roles in reducing resorption risk.This case emphasizes the importance of pretreatment risk assessment,individualized treatment strategy formulation,and comprehensive nursing intervention throughout treatment,providing reference for clinical prevention of root resorption.展开更多
The historical movements of relative sea level(RSL)reflect the geomorphological dynamics around coastal regions in the past,and reconstructing the RSL curve contributes to the prediction of future RSL movements.On the...The historical movements of relative sea level(RSL)reflect the geomorphological dynamics around coastal regions in the past,and reconstructing the RSL curve contributes to the prediction of future RSL movements.On the basis of the sediment sequence and optical stimulated luminescence(OSL)dating data of three boreholes in the Yellow River Delta(YRD),the positions of paleo-coastlines and the movements of RSL in the last 2000 years were reconstructed.The main results are as follows:1)the YRD coast transformed from a tide-dominated silty coast to a wave-dominated sandy coast and back to a tide-dominated silty coast in the last 2000 years.2)The sand layers consisting of shell fragments indicated the locations of the coastline in 1855 AD,893 AD,and 40 BC,and their top elevations were close to the mean high water level in the corresponding years.3)The mean sea level elevation in 79 BC,1019 AD,and 1800 AD relative to the modern sea level was -4.52,-4.52,and-2.92 m,respectively.4)The RSL was almost stagnant during 79 BC-1019 AD,rose slowly during 1019-1800 AD due to the reverse change of global climate from the Little Ice Age to the Medieval Warm Period,and rose significantly after 1800 AD due to the warm period.5)The movement of RSL controlled the surface slope of YRD,which was a slope of approximately 0.022‰ at 893 AD,an inverted slope of 0.144‰ at 1855 AD,and a slope of 0.075‰ recently.These findings indicate that the modern YRD is far from being abandoned in the future,providing a historical geomorphological basis for the management of the Yellow River Estuary.展开更多
1.Introduction Adherence to 24-hour movement guidelines—which encompass regular physical activity,adequate sleep,and limited sedentary time1—significantly influences long-term health outcomes during adolescence and ...1.Introduction Adherence to 24-hour movement guidelines—which encompass regular physical activity,adequate sleep,and limited sedentary time1—significantly influences long-term health outcomes during adolescence and contributes holistically to overall health.2 However,its prospective relationship with midlife mortality remains unknown to date.Our aim was to determine the association between adherence to 24-hour movement guidelines during adolescence and premature mortality 26-27 years later.This aim was based on existing evidence3 suggesting a potential link between meeting these guidelines and reduced mortality risk among adults in an 11-year follow-up.展开更多
Limb movement disorder after stroke is one of the main causes of disability,seriously affecting patients’quality of life.Although modern medical treatment can alleviate some symptoms,it has limitations.Traditional Ch...Limb movement disorder after stroke is one of the main causes of disability,seriously affecting patients’quality of life.Although modern medical treatment can alleviate some symptoms,it has limitations.Traditional Chinese medicine,with an overall perspective and syndrome differentiation and treatment as its core,intervenes in the disease through various therapies,such as acupuncture,Chinese herbal medicine,Tuina massage,and traditional exercise,demonstrating unique advantages.This article reviews the understanding of the etiology and pathogenesis of limb movement disorders after stroke in traditional Chinese medicine,systematically summarizes the clinical application and research progress of main treatment methods such as acupuncture,Chinese herbal medicine,and Tuina massage,analyzes the problems existing in current research,and looks forward to future development directions,aiming to provide references for clinical treatment.展开更多
Transcranial temporal interference stimulation(tTIS)is a novel non-invasive neuromodulation technique with the potential to precisely target deep brain structures.This study explores the neural and behavioral effects ...Transcranial temporal interference stimulation(tTIS)is a novel non-invasive neuromodulation technique with the potential to precisely target deep brain structures.This study explores the neural and behavioral effects of tTIS on the superior colliculus(SC),a region involved in eye movement control,in mice.Computational modeling revealed that tTIS delivers more focused stimulation to the SC than traditional transcranial alternating current stimulation.In vivo experiments,including Ca^(2+)signal recordings and eye movement tracking,showed that tTIS effectively modulates SC neural activity and induces eye movements.A significant correlation was found between stimulation frequency and saccade frequency,suggesting direct tTIS-induced modulation of SC activity.These results demonstrate the precision of tTIS in targeting deep brain regions and regulating eye movements,highlighting its potential for neuroscientific research and therapeutic applications.展开更多
Background:The Canadian 24-h movement guidelines(24-HMG)emphasize the holistic consideration of physical activity(PA),sedentary behavior,and sleep in shaping health outcomes.This study aimed to examine the association...Background:The Canadian 24-h movement guidelines(24-HMG)emphasize the holistic consideration of physical activity(PA),sedentary behavior,and sleep in shaping health outcomes.This study aimed to examine the associations between meeting 24-HMG and emotion regulation-related indicators among children and adolescents.Methods:A total of 534 Chinese children and adolescents aged 12.94±1.10 years(49.81%males)participated in this study and completed self-report measures assessing 24-h movement behaviors,emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Results:Only 7.12% of theparticipants adhered to two or all three guidelines.The number of guidelines met was positively associated with the use of emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Compared with meeting none of the guidelines,participants whomet one ormore guidelines reported significantly better performance in these outcomes.Conclusion:Meeting 24-HMG was associated with superior emotion regulation in children and adolescents.The importance of engaging in regular PA,limiting recreational screen time,and getting enough sleep should be highlighted for fostering emotion regulation in this demographic.展开更多
基金supported by the Zhongyuan University of Technology Discipline Backbone Teacher Support Program Project(No.GG202417)the Key Research and Development Program of Henan under Grant 251111212000.
文摘Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.
基金supported by the National Natural Science Foundation of China(82071143,82371000,82270361)Key Research and Development Program of Jiangsu Province(BE2022795)+2 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_1801)the Jiangsu Province Capability Improvement Project through the Science,Technology and Education-Jiangsu Provincial Research Hospital Cultivation Unit(YJXYYJSDW4)Jiangsu Provincial Medical Innovation Center(CXZX202227).
文摘Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon(RAP).Despite its therapeutic effects,the surgical risk and unclear mechanism hamper the clinical application.Numerous evidences support macrophages as the key immune cells during bone remodeling.Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2;R26GFP lineage tracing system.Fluorescence staining,flow cytometry analysis,and western blot determined the significantly enhanced expression of binding immunoglobulin protein(BiP)and emphasized the activation of sensor activating transcription factor 6(ATF6)in macrophages.Then,we verified that macrophage specific ATF6 deletion(ATF6f/f;CX3CR1CreERT2 mice)decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy.In contrast,macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement.In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6.At the mechanism level,RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfαpromotor and augmenting its transcription.Additionally,molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element(ERSE).Taken together,ATF6 may aggravate orthodontic bone remodeling by promoting Tnfαtranscription in macrophages,suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
基金support for this work is provided by the National Key R&D Program of China(2023YFC3012101)the National Natural Science Foundation of China(52474161)the Fundamental Research Funds for the Central Universities(2024ZKPYNY01).
文摘A novel block–particle discrete-element simulation method that matches the double medium of overlying rock(OLR)and loose layer(LSL)in coal mining is developed in this study.This method achieves the collaborative failure characteristics of mining damage under the conduction of double media between the OLR and LSL by combining the self-weight stress loading of the LSL and the breakage morphology of the bedrock top.Based on this,the conduction law of high-strength mining damage in the double medium in a western mining area is simulated and analyzed.The combining effect of the OLR breakage morphology and LSL characteristics on the surface-subsidence characteristics is analyzed and verified based on on-site measurements.The results indicate that the OLR is guided by the“double-control layer and thick-soft rock buffer layer”and shows“grouping subsidence”,whereas the surface forms collaborative subsidence with the thick-soft rock buffer layer.In the ultra-full mining stage,the surface presents an“asymmetric inverted trapezoidal”subsidence trough shape.The simulation results agree well the on-site measurements in terms of the surface-subsidence and bedrock-subsidence coefficients.The proposed simulation method provides a scientific approach for investigating the micro-conduction mechanism of mining damage under the effect of high-strength mining in western mining areas.It will benefit future investigations pertaining to the characteristics of OLR breakage and surface subsidence under conditions such as LSL thickness and proportion.
基金funded by the Ministry of Science and Technology of the People's Republic of China(Grant 2024ZD1001301)the National Natural Science Foundation of China(Grants 42272241,42102254 and 41830213)the Fundamental Research Funds for the Central Universities(Grant JZ2023HGTB0238).
文摘The approximately 3000 km long Tan-Lu fault zone(TLFZ)in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale.Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block.The Triassic fault zone,with a total length of about 720 km between the Dabie and Sulu orogens,exhibited an apparent sinistral offset of approximately 300 km along the TLFZ.The second stage of sinistral movement occurred in the earliest Late Jurassic,reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay,as well as forming a significant portion of the Dunhua-Mishan fault zone.The third stage of sinistral movement,in the earliest Early Cretaceous,was the most intense strike-slip movement of the Mesozoic,leading to the complete linkage of the TLFZ.This stage included further northward propagation of the southern-middle segment,both southward and northward propagation of the Dunhua-Mishan fault zone,as well as the formation of the entire Yilan-Yitong fault zone.The fourth stage,in the earliest Late Cretaceous,involved the reactivation of the entire TLFZ.Following its Triassic origin due to the indentation collision,the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol-Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous.The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone(>1000 km long)forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.
文摘The mining height of a coal seam is a critical factor influencing the detachment,collapse,and formation of the collapse angle of the strata during strata movement.To clarify the mechanism by which mining height affects strata movement characteristics,a physical model experiment was conducted based on the geological conditions of the Panel 122104 in Caojiatan Coal Mine in Shaanxi.The experiment examined strata movement at mining heights of 1 m and 10 m,identifying differences in detachment,collapse behavior,and collapse angles under these two conditions.The results indicate the following:Delamination range directly governs collapse patterns,with higher stress concentration accelerating delamination initiation and expanding affected zones.1 m mining height exhibits a“superposed fixed beam”structure with lower strength compared to the“fixed beam+cantilever beam”configuration under 10 m height.A model estimating collapse step shows 9.13%average error.Strata structure dictates collapse angle mechanisms:Pseudo-plastic deformation under 1 m height determines collapse angle through vertical tensile stress boundaries,whereas 10 m height exhibits brittle fracture behavior with collapse angles approximating fracture angles.Periodic collapse volume above working face directly correlates with mine pressure intensity and is positively correlated with the caving step distance,collapse angle,and caving range.These parameters show higher values under 10 m mining height,resulting in more pronounced mine pressure manifestations compared to 1 m conditions.
基金support from the National Natural Science Foundation of China(No.U24A20507,22271203)the State Key Laboratory of Organometallic Chemistry,Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences(No.2024KF005)Open Research Fund of State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering of Nanjing University and the Collaborative Innovation Centre of Suzhou Nano Science and Technology.
文摘Flexible circuit switches have been widely used in electronic devices due to their outstanding flexibility and operability.In order to expand the types of flexible circuit switch materials,we develop a unique composite material,which integrates a photoresponsive flexible substrate derived from a photoreactive coordination polymer(CP)with an elastic conductive adhesive tape(CAT)in this work.The photoreactive CP{[Cd(2,6-bpvn)(3,5-DBB)_(2)]·DMF}_(n)(1)is prepared through solvothermal reaction of Cd(NO_(3))_(2)·4H_(2)O with 2,6-bis((E)-2-(pyridin-4-yl)vinyl)naphthalene(2,6-bpvn)and 3,5-dibromobenzoic acid(3,5-HDBB).Upon irradiation with UV light,crystals of 1 can undergo[2+2]photocycloaddition reaction and exhibit photomechanical movements.The crystalline powder of 1 can be uniformly distributed in polyvinyl alcohol(PVA)to generate the composite film 1-PVA.After pasting a piece of CAT on the surface of a 1-PVA film,a conductive two-layer film of 1-PVA/CAT can be fabricated.This film bends rapidly upon UV light exposure,connecting the circuit and causing the bulb to light up.When the light source is removed,it reverts to its initial state and the circuit is disconnected and the bulb is extinguished.This process can be cycled at least 100 times,achieving precise turn-on and turn-off performances of the photocontrollable circuit switch.
基金Rabdan Academy for funding the research presented in the paper.
文摘The successful penetration of government,corporate,and organizational IT systems by state and non-state actors deploying APT vectors continues at an alarming pace.Advanced Persistent Threat(APT)attacks continue to pose significant challenges for organizations despite technological advancements in artificial intelligence(AI)-based defense mechanisms.While AI has enhanced organizational capabilities for deterrence,detection,and mitigation of APTs,the global escalation in reported incidents,particularly those successfully penetrating critical government infrastructure has heightened concerns among information technology(IT)security administrators and decision-makers.Literature review has identified the stealthy lateral movement(LM)of malware within the initially infected local area network(LAN)as a significant concern.However,current literature has yet to propose a viable approach for resource-efficient,real-time detection of APT malware lateral movement within the initially compromised LAN following perimeter breach.Researchers have suggested the nature of the dataset,optimal feature selection,and the choice of machine learning(ML)techniques as critical factors for detection.Hence,the objective of the research described here was to successfully demonstrate a simplified lightweight ML method for detecting the LM of APT vectors.While the nearest detection rate achieved in the LM domain within LAN was 99.89%,as reported in relevant studies,our approach surpassed it,with a detection rate of 99.95%for the modified random forest(RF)classifier for dataset 1.Additionally,our approach achieved a perfect 100%detection rate for the decision tree(DT)and RF classifiers with dataset 2,a milestone not previously reached in studies within this domain involving two distinct datasets.Using the ML life cycle methodology,we deployed K-nearest neighbor(KNN),support vector machine(SVM),DT,and RF on three relevant datasets to detect the LM of APTs at the affected LAN prior to data exfiltration/destruction.Feature engineering presented four critical APT LM intrusion detection(ID)indicators(features)across the three datasets,namely,the source port number,the destination port number,the packets,and the bytes.This study demonstrates the effectiveness of lightweight ML classifiers in detecting APT lateral movement after network perimeter breach.It contributes to the field by proposing a non-intrusive network detection method capable of identifying APT malware before data exfiltration,thus providing an additional layer of organizational defense.
文摘Root resorption is a significant complication in orthodontic treatment,with thin roots and reciprocal movement being recognized as high-risk factors.This paper reports a case of a 19-year-old female patient who underwent orthodontic treatment for dental irregularity.The patient had thin roots in the maxillary lateral incisors 12 and 22.During treatment,tooth 22 experienced reciprocal movement of labial expansion followed by retraction,while tooth 12 adopted passive ligation to reduce reciprocal movement.After 23 months of straight-wire extraction treatment,good occlusal relationships were achieved,but significant root resorption occurred in teeth 12 and 22,with tooth 22 showing more severe resorption.This case confirms the synergistic effect between thin roots and reciprocal movement,demonstrating that thin roots are more sensitive to reciprocal movement stimulation,producing a synergistic amplification effect.Additionally,standardized nursing guidance and patient compliance management play important roles in reducing resorption risk.This case emphasizes the importance of pretreatment risk assessment,individualized treatment strategy formulation,and comprehensive nursing intervention throughout treatment,providing reference for clinical prevention of root resorption.
基金supported financially by the National Natural Science Foundation of China(Nos.42330406 and 42476163)。
文摘The historical movements of relative sea level(RSL)reflect the geomorphological dynamics around coastal regions in the past,and reconstructing the RSL curve contributes to the prediction of future RSL movements.On the basis of the sediment sequence and optical stimulated luminescence(OSL)dating data of three boreholes in the Yellow River Delta(YRD),the positions of paleo-coastlines and the movements of RSL in the last 2000 years were reconstructed.The main results are as follows:1)the YRD coast transformed from a tide-dominated silty coast to a wave-dominated sandy coast and back to a tide-dominated silty coast in the last 2000 years.2)The sand layers consisting of shell fragments indicated the locations of the coastline in 1855 AD,893 AD,and 40 BC,and their top elevations were close to the mean high water level in the corresponding years.3)The mean sea level elevation in 79 BC,1019 AD,and 1800 AD relative to the modern sea level was -4.52,-4.52,and-2.92 m,respectively.4)The RSL was almost stagnant during 79 BC-1019 AD,rose slowly during 1019-1800 AD due to the reverse change of global climate from the Little Ice Age to the Medieval Warm Period,and rose significantly after 1800 AD due to the warm period.5)The movement of RSL controlled the surface slope of YRD,which was a slope of approximately 0.022‰ at 893 AD,an inverted slope of 0.144‰ at 1855 AD,and a slope of 0.075‰ recently.These findings indicate that the modern YRD is far from being abandoned in the future,providing a historical geomorphological basis for the management of the Yellow River Estuary.
文摘1.Introduction Adherence to 24-hour movement guidelines—which encompass regular physical activity,adequate sleep,and limited sedentary time1—significantly influences long-term health outcomes during adolescence and contributes holistically to overall health.2 However,its prospective relationship with midlife mortality remains unknown to date.Our aim was to determine the association between adherence to 24-hour movement guidelines during adolescence and premature mortality 26-27 years later.This aim was based on existing evidence3 suggesting a potential link between meeting these guidelines and reduced mortality risk among adults in an 11-year follow-up.
文摘Limb movement disorder after stroke is one of the main causes of disability,seriously affecting patients’quality of life.Although modern medical treatment can alleviate some symptoms,it has limitations.Traditional Chinese medicine,with an overall perspective and syndrome differentiation and treatment as its core,intervenes in the disease through various therapies,such as acupuncture,Chinese herbal medicine,Tuina massage,and traditional exercise,demonstrating unique advantages.This article reviews the understanding of the etiology and pathogenesis of limb movement disorders after stroke in traditional Chinese medicine,systematically summarizes the clinical application and research progress of main treatment methods such as acupuncture,Chinese herbal medicine,and Tuina massage,analyzes the problems existing in current research,and looks forward to future development directions,aiming to provide references for clinical treatment.
基金supported by the National Natural Science Foundation of China(T2394533,32222036,82030038,and 62472206)the National Key Research and Development Program of China(2018YFA0701400)the Shenzhen Science and Technology Innovation Committee(2022410129,KJZD20230923115221044,and KCXFZ20201221173400001).
文摘Transcranial temporal interference stimulation(tTIS)is a novel non-invasive neuromodulation technique with the potential to precisely target deep brain structures.This study explores the neural and behavioral effects of tTIS on the superior colliculus(SC),a region involved in eye movement control,in mice.Computational modeling revealed that tTIS delivers more focused stimulation to the SC than traditional transcranial alternating current stimulation.In vivo experiments,including Ca^(2+)signal recordings and eye movement tracking,showed that tTIS effectively modulates SC neural activity and induces eye movements.A significant correlation was found between stimulation frequency and saccade frequency,suggesting direct tTIS-induced modulation of SC activity.These results demonstrate the precision of tTIS in targeting deep brain regions and regulating eye movements,highlighting its potential for neuroscientific research and therapeutic applications.
基金supported by Zhejiang Provincial Social Science Funding(22NDJC050YB).
文摘Background:The Canadian 24-h movement guidelines(24-HMG)emphasize the holistic consideration of physical activity(PA),sedentary behavior,and sleep in shaping health outcomes.This study aimed to examine the associations between meeting 24-HMG and emotion regulation-related indicators among children and adolescents.Methods:A total of 534 Chinese children and adolescents aged 12.94±1.10 years(49.81%males)participated in this study and completed self-report measures assessing 24-h movement behaviors,emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Results:Only 7.12% of theparticipants adhered to two or all three guidelines.The number of guidelines met was positively associated with the use of emotion regulation strategies,emotion regulation flexibility,and regulatory emotional self-efficacy.Compared with meeting none of the guidelines,participants whomet one ormore guidelines reported significantly better performance in these outcomes.Conclusion:Meeting 24-HMG was associated with superior emotion regulation in children and adolescents.The importance of engaging in regular PA,limiting recreational screen time,and getting enough sleep should be highlighted for fostering emotion regulation in this demographic.