The role of auxiliary LAB as vehicle in dyeing polyester/wool blends with disperse dyes is described. Dye exhaustion and bonding on polyester/wool samples are studied under different experimental conditions - the LAB ...The role of auxiliary LAB as vehicle in dyeing polyester/wool blends with disperse dyes is described. Dye exhaustion and bonding on polyester/wool samples are studied under different experimental conditions - the LAB amount, the temperature and pH value- to achieve optimum conditions. The results are compared with those obtained with and without conventional dyeing auxiliary products. Although dye exhaustion is higher in the presence of commercial carriers, the dye bonded increases markedly in the presence of auxiliary LAB in both fibers. The role played by auxiliary LAB in polyester/wool blend dyeing can provide a new method for this process.展开更多
The effects of the blending ratio on the properties of Ramie/Polyester blended yarns are discussed in this paper. The experimental results show that the elongation of the yarn with the polyester content more than 40% ...The effects of the blending ratio on the properties of Ramie/Polyester blended yarns are discussed in this paper. The experimental results show that the elongation of the yarn with the polyester content more than 40% is better than that of others. There is a lowest tenacity of the yarn corresponding to the blending ratio of 50/50 or so. The other properties of the yarn, such as the evenness and hairiness, will be improved with the increasing of the polyester content.展开更多
Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester...Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester fiber blend ratio as well as the different pilling cycles on blended fabrics. The cotton, polyester, and elastane prepared the study fabrics. These fabrics are (90% Cotton/5% Polyester/5% Elastane, 90% Cotton/6% Polyester/4% Elastane, 90% Cotton/7% Polyester/3% Elastane, 90% Cotton/8% Polyester/2% Elastane, and 90% Cotton/9% Polyester/1% Elastane, 85% Cotton/10% Polyester/5% Elastane, 85% Cotton/11% Polyester/4% Elastane, 85% Cotton/12% Polyester/3% Elastane, 85% Cotton/13% Polyester/2% Elastane, and 85% Cotton/ 14% Polyester/1% Elastane, 80% Cotton/15% Polyester/5% Elastane, 80% Cotton/16% Polyester/4% Elastane, 80% Cotton/17% Polyester/3% Elastane, 80% Cotton/18% Polyester/2% Elastane, and 80% Cotton/19% Polyester/1% Elastane). The selected polyester blend ratios were 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% and 19% respectively. The study used the Martindale pilling tester with 2000, 5000, and 7000 cycles, respectively. The evaluation followed the ISO 12945-2:2000. The study findings are that the polyester fiber blend ratio did not influence the pilling grade on blended fabrics for pilling cycles 2000, and the pilling grade remained constant at 4 - 5. The pilling grade started to deteriorate in pilling cycle 5000 for the fabrics 85%C/10%P/5%E, 85%C/11%P/4%E, 85%C/12%P/3%E, 85%C/ 13%P/2%E, 85%C/14%P/1%E showed the pilling grade 4, and the fabrics made from 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 4, 3, 3, 3, and 3 respectively. For the pilling cycles 7000, the pilling grade further deteriorated for the fabrics 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 3, 3, 2, 2, and 2 respectively. The study finds the dominance of polyester fiber throughout the experiment. The author hopes this study’s outcome will help new researchers, advanced researchers, and the textile industry’s sustainable development research and development team.展开更多
Blends of polyamide (Nylon 66) with two different kinds of liquid crystalline polyesters were studied in all the composition range. Homogeneous samples were obtained by coprccipitation from 2 wt%. solution of blends. ...Blends of polyamide (Nylon 66) with two different kinds of liquid crystalline polyesters were studied in all the composition range. Homogeneous samples were obtained by coprccipitation from 2 wt%. solution of blends. The thermal properties, crystallinity and morphology of these blends were studied by using DSC, polarizing microscopy, and scanning electron microscopy. The phase transition and morphology of the blends are markedly-influenced by the composition of liquid crystalline polyesters. The mechanical behaviour of PHB/HNA-Nylon 66 blend was improved. although polyamidc (Nylon 66)with the liquid crystalline polyesters were incompatible, but a rather strong interaction between the polymers did exist.展开更多
Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub&g...Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub>O solu-tion. We investigated the morphology of PP/EHDPETblend fibers before and after stretching and alkalinehydrolysis. Then thermal behavior of the blend has alsobeen studied.展开更多
Cation Dyeable Polyester(CDP)was made by copolymerizing dimethyl terephthalate(DMT),S-sodium sulfonate dimethyl isophthalate(SIPM) with a weight fraction of 4.5% and ethyleneglycol (EG).Blend of PET and CDP was spun i...Cation Dyeable Polyester(CDP)was made by copolymerizing dimethyl terephthalate(DMT),S-sodium sulfonate dimethyl isophthalate(SIPM) with a weight fraction of 4.5% and ethyleneglycol (EG).Blend of PET and CDP was spun into hollow fiber.The fiber was then treated withaqueous NaOH.In this paper,kinetics and mechanism of alkaline hydrolysis of PET,CDP andtheir blend PET/CDP fiber were studied by means of specific area measurement,scantling elec-tron microscopy and other chemical analyses.It was showed that the rate of alkaline hydrolysis isCDP】PET/CDP】PET.Because of blending effect,the alkaline hydrolysis of PET/CDP is dif-ferent from that of PET.CDP phase in the PET/CDP fiber is predominantly hydrolyzed,andhence some pieces of fiber(micro-fiber) fall off the fiber because of etching.展开更多
Present study deals with the biodegradable behavior of individual components and their preforms of nonwoven biocomposites developed from waste wool fibers including coring wool(CW),dorper wool(DW)and recycled polyeste...Present study deals with the biodegradable behavior of individual components and their preforms of nonwoven biocomposites developed from waste wool fibers including coring wool(CW),dorper wool(DW)and recycled polyester fibers(RPET).A respirometric technique was employed to estimate the production of CO_(2) during the biodegradation experiments under soil and aqueous media conditions.Functional groups of test samples before and after biodegradation were analyzed using Fourier transform infrared spectroscopy(FTIR).Leaching chemicals such as formaldehyde(hydrolyzed)and Chromium VI(Cr VI)was also measured.The CO_(2) emission in wool fibers CW and DW indicated 90%and 60%biodegradation in soil burial and aqueous media conditions respectively,for 100 days incubation.RPET fibers,20%and 10%biodegradation in soil burial and aqueous media conditions was measured respectively while the preforms of waste wool and RPET reflected 30%and 25%biodegradation in soil burial and aqueous media conditions,respectively.The degradation of end functional groups such as carbonyl(keto and ester),aldehyde and hydroxyl were also confirmed by FTIR.The DW and CW wool fibers showed higher Cr(VI)concentration as compared to the RPET.The released formaldehyde results showed higher concentration for RPET preforms as compared to waste wool preforms.These results suggest that waste wool preforms are extremely environment friendly as compared to RPET preforms.Thus,waste wool preforms it can be potentially utilized for preparing biocomposite materials and associated biobased products.展开更多
Wool & silk blended fancy suiting is desinged. Through trial-production with silk sliver and Australian wool top, the spinning technology is investigated, and the relationship of spinning technology, blending rati...Wool & silk blended fancy suiting is desinged. Through trial-production with silk sliver and Australian wool top, the spinning technology is investigated, and the relationship of spinning technology, blending ratio and yarn construction is discussed.展开更多
Many of us have the feeling: you step out in a T-shirt on a summer day, and within twenty minutes, your underarms feel damp. There are sweat marks on the clothes, and they are clearly visible. While many debate the me...Many of us have the feeling: you step out in a T-shirt on a summer day, and within twenty minutes, your underarms feel damp. There are sweat marks on the clothes, and they are clearly visible. While many debate the merits of polyester fabric with cool-touch feelingversus cotton as temperatures soar, the apparel world is quietly experiencing a "merino wool trend." A lot of major brands are launching merino wool short-sleeve tees.展开更多
Copolyesters having secondary and tertiary amine salt groups in the main and side chains are prepared by chemoselective polymerization. These copolyesters are soluble in a 10% aqueous solution of poly(vinyl alcohol) ...Copolyesters having secondary and tertiary amine salt groups in the main and side chains are prepared by chemoselective polymerization. These copolyesters are soluble in a 10% aqueous solution of poly(vinyl alcohol) (PVA) at 90 degree C and act as plasticizer in the blend films cast from the solution. Only a glass transition temperature is observed for all these blends indicating the formation of compatible blends from these polyesters with PVA. These blends exhibit manifold characteristics such as ionic conductivity, complex formation with metal ions, absorption of moisture and color changes. The electric conductivity of the copolyesters and blends is in the range of 10** minus **6 Scm** minus **1. The blends with PVA forms complexes with Cu**2** plus and Co**2** plus . The coordination structure with two chelate rings is suggested for these polymer blend/metal complexes. (Author abstract) 10 Refs.展开更多
An easy hydrolysis degradable polyester (EHDP) is synthesized; the fiber produced from which can be hydrolyzed by dilute basic solution easily. The properties of these kind polyesters are measured. The results show th...An easy hydrolysis degradable polyester (EHDP) is synthesized; the fiber produced from which can be hydrolyzed by dilute basic solution easily. The properties of these kind polyesters are measured. The results show that this kind polymer is suitable to be spun into filament The EHDP can be spun into staple fiber and manufactured into non-woven fabric. This fabric is used as disposable clothes. In composite spinning, the PET (polyethylen glycol terephthalate) or PA (polyamide) is used as continuous phase, and EHDP used as dispersed phase. Then the fabric of this kind fiber is treated by basic solution; the ultra-fine fiber fabric is obtained.The fineness of the fiber is about 0.045 dtex. In blend spinning, EHDP is mixed with polypropylene (PP) to produce hollow fiber with micro-holes in radical direction. This fiber is a usable material in filter especially in medical use.展开更多
An investigation is described in which various polyfunctional elastomers( cationic methylaminopolysiloxane,nonic concentrated glyoxal resin and anionicpolyurethane etc. ) were applied on silk,wool and silk/ wool blend...An investigation is described in which various polyfunctional elastomers( cationic methylaminopolysiloxane,nonic concentrated glyoxal resin and anionicpolyurethane etc. ) were applied on silk,wool and silk/ wool blend fabrics forimprovement wrinkle recovery.A study on this paper describes wrinkle recovery oftreated fabrics by the thermobench method,and ascertains reason which elastomerimproves wrinkle recovery of silk and silk/ wool blend fabrics according as results ofthe DSC,the SEM and the acid or alkali resistance.展开更多
The wrinking properties of light-weight woven fabrics mabe from wool and a range ofwool/silk blends have been assessed using the“Thermobench”test method.The effects ofageing/annealing,and of interyarn and interfibre...The wrinking properties of light-weight woven fabrics mabe from wool and a range ofwool/silk blends have been assessed using the“Thermobench”test method.The effects ofageing/annealing,and of interyarn and interfibre friction,have been compared for the vani-ous fabrics.The results of attemps to improve wrinkle recovery by chemical modification arepresented,and possible directions for future work are considered.展开更多
The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fi...The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.展开更多
文摘The role of auxiliary LAB as vehicle in dyeing polyester/wool blends with disperse dyes is described. Dye exhaustion and bonding on polyester/wool samples are studied under different experimental conditions - the LAB amount, the temperature and pH value- to achieve optimum conditions. The results are compared with those obtained with and without conventional dyeing auxiliary products. Although dye exhaustion is higher in the presence of commercial carriers, the dye bonded increases markedly in the presence of auxiliary LAB in both fibers. The role played by auxiliary LAB in polyester/wool blend dyeing can provide a new method for this process.
文摘The effects of the blending ratio on the properties of Ramie/Polyester blended yarns are discussed in this paper. The experimental results show that the elongation of the yarn with the polyester content more than 40% is better than that of others. There is a lowest tenacity of the yarn corresponding to the blending ratio of 50/50 or so. The other properties of the yarn, such as the evenness and hairiness, will be improved with the increasing of the polyester content.
文摘Pilling is a severe concern for blended fabrics. The aesthetic look and smoothness are the buyers’ prime requirements. The main focus of the study was to see the pilling behavior from various percentages of polyester fiber blend ratio as well as the different pilling cycles on blended fabrics. The cotton, polyester, and elastane prepared the study fabrics. These fabrics are (90% Cotton/5% Polyester/5% Elastane, 90% Cotton/6% Polyester/4% Elastane, 90% Cotton/7% Polyester/3% Elastane, 90% Cotton/8% Polyester/2% Elastane, and 90% Cotton/9% Polyester/1% Elastane, 85% Cotton/10% Polyester/5% Elastane, 85% Cotton/11% Polyester/4% Elastane, 85% Cotton/12% Polyester/3% Elastane, 85% Cotton/13% Polyester/2% Elastane, and 85% Cotton/ 14% Polyester/1% Elastane, 80% Cotton/15% Polyester/5% Elastane, 80% Cotton/16% Polyester/4% Elastane, 80% Cotton/17% Polyester/3% Elastane, 80% Cotton/18% Polyester/2% Elastane, and 80% Cotton/19% Polyester/1% Elastane). The selected polyester blend ratios were 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% and 19% respectively. The study used the Martindale pilling tester with 2000, 5000, and 7000 cycles, respectively. The evaluation followed the ISO 12945-2:2000. The study findings are that the polyester fiber blend ratio did not influence the pilling grade on blended fabrics for pilling cycles 2000, and the pilling grade remained constant at 4 - 5. The pilling grade started to deteriorate in pilling cycle 5000 for the fabrics 85%C/10%P/5%E, 85%C/11%P/4%E, 85%C/12%P/3%E, 85%C/ 13%P/2%E, 85%C/14%P/1%E showed the pilling grade 4, and the fabrics made from 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 4, 3, 3, 3, and 3 respectively. For the pilling cycles 7000, the pilling grade further deteriorated for the fabrics 80%C/15%P/5%E, 80%C/16%P/4%E, 80%C/17%P/3%E, 80%C/ 18%P/2%E, 80%C/19%P/1%E showed the pilling grade 3, 3, 2, 2, and 2 respectively. The study finds the dominance of polyester fiber throughout the experiment. The author hopes this study’s outcome will help new researchers, advanced researchers, and the textile industry’s sustainable development research and development team.
文摘Blends of polyamide (Nylon 66) with two different kinds of liquid crystalline polyesters were studied in all the composition range. Homogeneous samples were obtained by coprccipitation from 2 wt%. solution of blends. The thermal properties, crystallinity and morphology of these blends were studied by using DSC, polarizing microscopy, and scanning electron microscopy. The phase transition and morphology of the blends are markedly-influenced by the composition of liquid crystalline polyesters. The mechanical behaviour of PHB/HNA-Nylon 66 blend was improved. although polyamidc (Nylon 66)with the liquid crystalline polyesters were incompatible, but a rather strong interaction between the polymers did exist.
文摘Ultrafine polypropylene fibers are prepared frompolypropylene/easily hydro - degraded polyester (PP/EHDPET) blend fibers, in which file EHDPET compo-nent is degradable by treating with NaOH - H<sub>2</sub>O solu-tion. We investigated the morphology of PP/EHDPETblend fibers before and after stretching and alkalinehydrolysis. Then thermal behavior of the blend has alsobeen studied.
文摘Cation Dyeable Polyester(CDP)was made by copolymerizing dimethyl terephthalate(DMT),S-sodium sulfonate dimethyl isophthalate(SIPM) with a weight fraction of 4.5% and ethyleneglycol (EG).Blend of PET and CDP was spun into hollow fiber.The fiber was then treated withaqueous NaOH.In this paper,kinetics and mechanism of alkaline hydrolysis of PET,CDP andtheir blend PET/CDP fiber were studied by means of specific area measurement,scantling elec-tron microscopy and other chemical analyses.It was showed that the rate of alkaline hydrolysis isCDP】PET/CDP】PET.Because of blending effect,the alkaline hydrolysis of PET/CDP is dif-ferent from that of PET.CDP phase in the PET/CDP fiber is predominantly hydrolyzed,andhence some pieces of fiber(micro-fiber) fall off the fiber because of etching.
基金supported in part by the National Research Foundation of South Africa(Grant-specific unique reference numbers(UID)104840).
文摘Present study deals with the biodegradable behavior of individual components and their preforms of nonwoven biocomposites developed from waste wool fibers including coring wool(CW),dorper wool(DW)and recycled polyester fibers(RPET).A respirometric technique was employed to estimate the production of CO_(2) during the biodegradation experiments under soil and aqueous media conditions.Functional groups of test samples before and after biodegradation were analyzed using Fourier transform infrared spectroscopy(FTIR).Leaching chemicals such as formaldehyde(hydrolyzed)and Chromium VI(Cr VI)was also measured.The CO_(2) emission in wool fibers CW and DW indicated 90%and 60%biodegradation in soil burial and aqueous media conditions respectively,for 100 days incubation.RPET fibers,20%and 10%biodegradation in soil burial and aqueous media conditions was measured respectively while the preforms of waste wool and RPET reflected 30%and 25%biodegradation in soil burial and aqueous media conditions,respectively.The degradation of end functional groups such as carbonyl(keto and ester),aldehyde and hydroxyl were also confirmed by FTIR.The DW and CW wool fibers showed higher Cr(VI)concentration as compared to the RPET.The released formaldehyde results showed higher concentration for RPET preforms as compared to waste wool preforms.These results suggest that waste wool preforms are extremely environment friendly as compared to RPET preforms.Thus,waste wool preforms it can be potentially utilized for preparing biocomposite materials and associated biobased products.
文摘Wool & silk blended fancy suiting is desinged. Through trial-production with silk sliver and Australian wool top, the spinning technology is investigated, and the relationship of spinning technology, blending ratio and yarn construction is discussed.
文摘Many of us have the feeling: you step out in a T-shirt on a summer day, and within twenty minutes, your underarms feel damp. There are sweat marks on the clothes, and they are clearly visible. While many debate the merits of polyester fabric with cool-touch feelingversus cotton as temperatures soar, the apparel world is quietly experiencing a "merino wool trend." A lot of major brands are launching merino wool short-sleeve tees.
文摘Copolyesters having secondary and tertiary amine salt groups in the main and side chains are prepared by chemoselective polymerization. These copolyesters are soluble in a 10% aqueous solution of poly(vinyl alcohol) (PVA) at 90 degree C and act as plasticizer in the blend films cast from the solution. Only a glass transition temperature is observed for all these blends indicating the formation of compatible blends from these polyesters with PVA. These blends exhibit manifold characteristics such as ionic conductivity, complex formation with metal ions, absorption of moisture and color changes. The electric conductivity of the copolyesters and blends is in the range of 10** minus **6 Scm** minus **1. The blends with PVA forms complexes with Cu**2** plus and Co**2** plus . The coordination structure with two chelate rings is suggested for these polymer blend/metal complexes. (Author abstract) 10 Refs.
文摘An easy hydrolysis degradable polyester (EHDP) is synthesized; the fiber produced from which can be hydrolyzed by dilute basic solution easily. The properties of these kind polyesters are measured. The results show that this kind polymer is suitable to be spun into filament The EHDP can be spun into staple fiber and manufactured into non-woven fabric. This fabric is used as disposable clothes. In composite spinning, the PET (polyethylen glycol terephthalate) or PA (polyamide) is used as continuous phase, and EHDP used as dispersed phase. Then the fabric of this kind fiber is treated by basic solution; the ultra-fine fiber fabric is obtained.The fineness of the fiber is about 0.045 dtex. In blend spinning, EHDP is mixed with polypropylene (PP) to produce hollow fiber with micro-holes in radical direction. This fiber is a usable material in filter especially in medical use.
文摘An investigation is described in which various polyfunctional elastomers( cationic methylaminopolysiloxane,nonic concentrated glyoxal resin and anionicpolyurethane etc. ) were applied on silk,wool and silk/ wool blend fabrics forimprovement wrinkle recovery.A study on this paper describes wrinkle recovery oftreated fabrics by the thermobench method,and ascertains reason which elastomerimproves wrinkle recovery of silk and silk/ wool blend fabrics according as results ofthe DSC,the SEM and the acid or alkali resistance.
文摘The wrinking properties of light-weight woven fabrics mabe from wool and a range ofwool/silk blends have been assessed using the“Thermobench”test method.The effects ofageing/annealing,and of interyarn and interfibre friction,have been compared for the vani-ous fabrics.The results of attemps to improve wrinkle recovery by chemical modification arepresented,and possible directions for future work are considered.
文摘The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.