Nowadays,the rapid development of artificial intelligence(AI)provides a fresh perspective in designing future wireless communication systems.Innumerable attempts exploiting AI methods have been carried out,which resul...Nowadays,the rapid development of artificial intelligence(AI)provides a fresh perspective in designing future wireless communication systems.Innumerable attempts exploiting AI methods have been carried out,which results in the state-of-the-art performance in many different areas of wireless communications.In this article,we present the most recent and insightful developments that demonstrate the potentials of AI techniques in different physical layer(PHY)components and applications including channel characterization,channel coding,intelligent signal identification,channel estimation,new PHY for random access in massive machine-type communication(mMTC),massive multiple-input multiple-output(MIMO)power control and PHY resource management.Open challenges and potential future directions are identified and discussed along this research line.展开更多
Healthcare is one of the major applications of wireless systems that possess crucial issues. Specifically developing countries require a tow cost and reliable network with efficient protocols. The most challenging con...Healthcare is one of the major applications of wireless systems that possess crucial issues. Specifically developing countries require a tow cost and reliable network with efficient protocols. The most challenging concern of Body Area Network (BAN) is heterogeneity, which requires fairness with reliability among all the network nodes. Solutions proposed for these networks either do not provide fair packet transmission or consume high energy and introduce delays. In this paper, we propose a cross layer protocol for healthcare applications meeting the requirements and challenges of the heterogeneous BAN. The protocol is also feasible for developing countries as it can be implemented over existing wireless infrastructure and provides high network reliability with energy efficiency through cooperation and adaptability. Results show that the proposed scheme improves reliability, throughput, Packet Delivery Ratio (PDR), and energy consumption for scalable and mobile networks over conventional BAN protocols.展开更多
Diadochokinesia pertains to a standard aspect of the conventional neurological examination, which involves the oscillation between muscle groups with an agonist and antagonist relationship. A representative example is...Diadochokinesia pertains to a standard aspect of the conventional neurological examination, which involves the oscillation between muscle groups with an agonist and antagonist relationship. A representative example is the pronation and supination of the forearm. Hemiparesis visibly demonstrates disparity of diadochokinesia, and clinical quantification is achieved through the use of an ordinal scale, which is inherently subjective. A conformal wearable and wireless inertial sensor equipped with a gyroscope mounted about the dorsum of the hand can objectively quantify diadochokinesia respective of forearm pronation and supination. The objective of the research endeavor was to apply an assortment of machine learning algorithms to distinguish between a hemiplegic affected and unaffected upper limb pair based on diadochokinesia with respect to pronation and supination of the forearm. Performance of the machine learning algorithms, such as the multilayer perceptron neural network, J48 decision tree, random forest, K-nearest neighbors, logistic regression, and naïve Bayes, were evaluated in consideration of classification accuracy and time to develop the machine learning model. The machine learning feature set was derived from the acquired gyroscope signal data. Using the gyroscope signal data from the conformal wearable and wireless inertial sensor the logistic regression and naïve Bayes machine learning algorithms achieved considerable performance capability with respect to both time to converge the machine learning model and classification accuracy for distinguishing between a hemiplegic upper limb pair for diadochokinesia in consideration of pronation and supination.展开更多
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi...This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.展开更多
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These...Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.展开更多
Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity...Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.展开更多
This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual cou...This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual coupling scenario.The article proposed several critical aspects,including the optimization of transmission data requirements,which is essential to ensure that communication between trains is efficient and reliable.The design of the T2T wireless communication subsystem is discussed in detail,outlining the technical specifications,protocols,and technologies employed to facilitate wireless communication between multiple trains.Additionally,the article presents a thorough analysis of the data collected during real-world train experiments,highlighting the performance metrics and challenges encountered during testing.This empirical data not only validates the effectiveness of the proposed design but also serves as a crucial reference for future advancements in T2T wireless communication systems.By combining both theoretical principles and practical outcomes,the article offers insights that will aid engineers and researchers in developing robust and efficient wireless communication systems for next-generation train operations.展开更多
This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cy...This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cycle,combined with a 41 MHz carrier wave produced by a passive crystal oscillator Pierce circuit.A 100% modulation index amplitude modulation is achieved through the AD835 multiplier.The modulated signal is amplified by a power amplifier circuit and transmitted wirelessly via the transmitter antenna.Upon reception,the signal undergoes two-stage highfrequency amplification before passing through a Schottky diode envelope detector.The NE5532 shaping circuit then restores the square wave.Experimental results demonstrate reliable 11-meter transmission with carrier frequency deviation<0.75% and demodulation error<1%.展开更多
Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mec...Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mechanical motions.Here,we present a transformable,reconfigurable robotic platform created by the integration of magnetically responsive soft composite matrices with deformable multifunctional electronics.Magnetic compounds engineered to undergo phase transition at a low temperature can readily achieve reversible magnetization and conduct various changes of motions and shapes.Thin and flexible electronic system designed with mechanical dynamics does not interfere with movements of the soft electronic robot,and the performances of wireless circuit,sensors,and devices are independent of a variety of activities,all of which are verified by theoretical studies.Demonstration of navigations and electronic operations in an artificial track highlights the potential of the integrated soft robot for on-demand,environments-responsive movements/metamorphoses,and optoelectrical detection and stimulation.Further improvements to a miniaturized,sophisticated system with material options enable in situ monitoring and treatment in envisioned areas such as biomedical implants.展开更多
This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based h...This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based heterogeneous networks.In this setup,the RF links obey κ-μ fading,while the UOWC links undergo the generalized Gamma fading with the pointing error impairments.The relay operates under an Amplify-and-Forward(AF)protocol.Additionally,the attenuation caused by the Absorption and Scattering(AaS)is considered in UOWC links.The work yields precise results for the Average Channel Capacity(ACC),Outage Probability(OP),and average Bit Error Rate(BER).Furthermore,to reveal deeper insights,bounds on the ACC and asymptotic results for the OP and average BER are derived.The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output(SISO)-RF/UOWC AF systems.Various factors affecting the Diversity Gain(DG)of the MIMO-RF/UOWC AF system include the number of antennas/apertures,fading parameters of both links,and pointing error parameters.Moreover,while an increase in the AaS effect can result in significant attenuation,it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.展开更多
In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaini...In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.展开更多
We demonstrate a 200 m outdoor 2×2 multiple-input multiple-output(MIMO)terahertz(THz)communication system operating at 300 GHz with 200 Gb/s polarization-division multiplexed quadrature phase-shift keying(PDM-QPS...We demonstrate a 200 m outdoor 2×2 multiple-input multiple-output(MIMO)terahertz(THz)communication system operating at 300 GHz with 200 Gb/s polarization-division multiplexed quadrature phase-shift keying(PDM-QPSK)transmission.We propose an iteratively pruned two-dimensional convolutional neural network(2D CNN)equalizer that adaptively captures polarization crosstalk and temporal nonlinearities through 2D convolution kernels.The system achieves a bit error rate(BER)below the hard-decision forward error correction(HD-FEC)threshold at a lower power of 6 d Bm,while reducing the computational complexity by 30.2%compared to the iteratively pruned one-dimensional(1D)CNN approach.This enables high-capacity and energy-efficient operation in long-distance THz links.展开更多
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
Recent researches show that it is possible to achieve full-duplex system if the self-interference signal could be cancelled completely for 6G research.The majority of the overall self-interference cancellation is cont...Recent researches show that it is possible to achieve full-duplex system if the self-interference signal could be cancelled completely for 6G research.The majority of the overall self-interference cancellation is contributed by passive cancellation.The lowest complexity cancellation technique is digital cancellation.Therefore,this paper presents a novel passive cancellation technique based on multi-path effect and a novel digital cancellation method considering nonlinearity factor in full-duplex system.Therein,for passive cancellation method,theoretical analysis is presented and practical experiments show that it can achieve about 50 dB only in 10-cm space.For digital cancellation method,a model based on practical platform is given and it can achieve about 30 dB under high transmit power.In addition,two relay schemes based on full-duplex for two-way relay channel called FD-DF(full-duplex decode-and-forward)and FD-AF(full-duplex amplify-and-forward)are presented.Two proposed schemes can nearly double the system throughputs especially in high signal-to-noise radio regions compared with traditional AF scheme.展开更多
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal...The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.展开更多
This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection...This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.展开更多
For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Veh...For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.展开更多
It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sens...It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes.展开更多
Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been...Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.展开更多
基金the Fundamental Research Funds for the Central Universities(2020JBM090,2020JBZD005)National Key R&D Program of China(2018YFE0207600,2020YFB1807201)+5 种基金the Key-Area Research and Development Program of Guangdong Province(2019B010157002)the Natural Science Foundation of China(61671046,61911530216,6196113039,U1834210)the Beijing Natural Science Foundation(L202019)the State Key Laboratory of Rail Traffic Control and Safety(RCS2021ZZ004,RCS2020ZT010)of Beijing Jiaotong UniversityNSFC Outstanding Youth Foundation under Grant 61725101the Royal Society Newton Advanced Fellowship under Grant NA191006.
文摘Nowadays,the rapid development of artificial intelligence(AI)provides a fresh perspective in designing future wireless communication systems.Innumerable attempts exploiting AI methods have been carried out,which results in the state-of-the-art performance in many different areas of wireless communications.In this article,we present the most recent and insightful developments that demonstrate the potentials of AI techniques in different physical layer(PHY)components and applications including channel characterization,channel coding,intelligent signal identification,channel estimation,new PHY for random access in massive machine-type communication(mMTC),massive multiple-input multiple-output(MIMO)power control and PHY resource management.Open challenges and potential future directions are identified and discussed along this research line.
文摘Healthcare is one of the major applications of wireless systems that possess crucial issues. Specifically developing countries require a tow cost and reliable network with efficient protocols. The most challenging concern of Body Area Network (BAN) is heterogeneity, which requires fairness with reliability among all the network nodes. Solutions proposed for these networks either do not provide fair packet transmission or consume high energy and introduce delays. In this paper, we propose a cross layer protocol for healthcare applications meeting the requirements and challenges of the heterogeneous BAN. The protocol is also feasible for developing countries as it can be implemented over existing wireless infrastructure and provides high network reliability with energy efficiency through cooperation and adaptability. Results show that the proposed scheme improves reliability, throughput, Packet Delivery Ratio (PDR), and energy consumption for scalable and mobile networks over conventional BAN protocols.
文摘Diadochokinesia pertains to a standard aspect of the conventional neurological examination, which involves the oscillation between muscle groups with an agonist and antagonist relationship. A representative example is the pronation and supination of the forearm. Hemiparesis visibly demonstrates disparity of diadochokinesia, and clinical quantification is achieved through the use of an ordinal scale, which is inherently subjective. A conformal wearable and wireless inertial sensor equipped with a gyroscope mounted about the dorsum of the hand can objectively quantify diadochokinesia respective of forearm pronation and supination. The objective of the research endeavor was to apply an assortment of machine learning algorithms to distinguish between a hemiplegic affected and unaffected upper limb pair based on diadochokinesia with respect to pronation and supination of the forearm. Performance of the machine learning algorithms, such as the multilayer perceptron neural network, J48 decision tree, random forest, K-nearest neighbors, logistic regression, and naïve Bayes, were evaluated in consideration of classification accuracy and time to develop the machine learning model. The machine learning feature set was derived from the acquired gyroscope signal data. Using the gyroscope signal data from the conformal wearable and wireless inertial sensor the logistic regression and naïve Bayes machine learning algorithms achieved considerable performance capability with respect to both time to converge the machine learning model and classification accuracy for distinguishing between a hemiplegic upper limb pair for diadochokinesia in consideration of pronation and supination.
基金Chongqing Engineering University Undergraduate Innovation and Entrepreneurship Training Program Project:Wireless Fire Automatic Alarm System(Project No.:CXCY2024017)Chongqing Municipal Education Commission Science and Technology Research Project:Development and Research of Chongqing Wireless Fire Automatic Alarm System(Project No.:KJQN202401906)。
文摘This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.
基金partially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025242)by the Korea government(MIST)(RS-2023-00302751,RS-2024-00343686)the Research Grant of Kwangwoon University in 2024。
文摘Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing,particularly in challenging environments for monitoring industry and healthcare applications.These systems are equipped with battery-free operation,wireless connectivity,and are designed to be both miniaturized and lightweight.Such features enable the safe,real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices.Despite the exploration into diverse application environments,the development of a systematic and comprehensive research framework for system architecture remains elusive,which hampers further optimization of these systems.This review,therefore,begins with an examination of application scenarios,progresses to evaluate current system architectures,and discusses the function of each component—specifically,the passive sensor module,the wireless communication model,and the readout module—within the context of key implementations in target sensing systems.Furthermore,we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios,derived from this systematic approach.By outlining a research trajectory for the application of passive wireless systems in sensing technologies,this paper aims to establish a foundation for more advanced,user-friendly applications.
文摘Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.
基金supported by the National Key R&D Program of China(2021YFF0501103).
文摘This article discusses the detailed examination of the engineering design and implementation process for direct Train-to-Train(T2T)communication within a wireless train backbone network in the context of a virtual coupling scenario.The article proposed several critical aspects,including the optimization of transmission data requirements,which is essential to ensure that communication between trains is efficient and reliable.The design of the T2T wireless communication subsystem is discussed in detail,outlining the technical specifications,protocols,and technologies employed to facilitate wireless communication between multiple trains.Additionally,the article presents a thorough analysis of the data collected during real-world train experiments,highlighting the performance metrics and challenges encountered during testing.This empirical data not only validates the effectiveness of the proposed design but also serves as a crucial reference for future advancements in T2T wireless communication systems.By combining both theoretical principles and practical outcomes,the article offers insights that will aid engineers and researchers in developing robust and efficient wireless communication systems for next-generation train operations.
文摘This paper designs a high-frequency stable wireless amplitude modulation(AM)system based on a Pierce circuit.The system utilizes an oscillator and comparator to generate a 20 kHz square wave with an adjustable duty cycle,combined with a 41 MHz carrier wave produced by a passive crystal oscillator Pierce circuit.A 100% modulation index amplitude modulation is achieved through the AD835 multiplier.The modulated signal is amplified by a power amplifier circuit and transmitted wirelessly via the transmitter antenna.Upon reception,the signal undergoes two-stage highfrequency amplification before passing through a Schottky diode envelope detector.The NE5532 shaping circuit then restores the square wave.Experimental results demonstrate reliable 11-meter transmission with carrier frequency deviation<0.75% and demodulation error<1%.
基金supported by the Korea Institute of Science and Technology(KIST)Institutional Program(Project No.2E32501-23-106)the National Research Foundation of Korea(NRF)grant funded by the Korea government(the Ministry of Science,ICT,MSIT)(RS-2022-00165524)+2 种基金the development of technologies for electroceuticals of National Research Foundation(NRF)funded by the Korean government(MSIT)(RS-2023-00220534)ICT Creative Consilience program through the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(IITP-2024-2020-0-01819)Start up Pioneering in Research and Innovation(SPRINT)through the Commercialization Promotion Agency for R&D Outcomes(COMPA)grant funded by the Korea government(Ministry of Science and ICT)(1711198921).
文摘Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots,although most studies are limited to designs,controls,or physical/mechanical motions.Here,we present a transformable,reconfigurable robotic platform created by the integration of magnetically responsive soft composite matrices with deformable multifunctional electronics.Magnetic compounds engineered to undergo phase transition at a low temperature can readily achieve reversible magnetization and conduct various changes of motions and shapes.Thin and flexible electronic system designed with mechanical dynamics does not interfere with movements of the soft electronic robot,and the performances of wireless circuit,sensors,and devices are independent of a variety of activities,all of which are verified by theoretical studies.Demonstration of navigations and electronic operations in an artificial track highlights the potential of the integrated soft robot for on-demand,environments-responsive movements/metamorphoses,and optoelectrical detection and stimulation.Further improvements to a miniaturized,sophisticated system with material options enable in situ monitoring and treatment in envisioned areas such as biomedical implants.
基金supported in part by the National Natural Science Foundation of China under Grant 62301272the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications under Grants NY223023 and NY223027.
文摘This paper studies a cooperative relay transmission system within the framework of Multiple-Input Multiple-Output Radio Frequency/Underwater Optical Wireless Communication(MIMO-RF/UOWC),aiming to establish sea-based heterogeneous networks.In this setup,the RF links obey κ-μ fading,while the UOWC links undergo the generalized Gamma fading with the pointing error impairments.The relay operates under an Amplify-and-Forward(AF)protocol.Additionally,the attenuation caused by the Absorption and Scattering(AaS)is considered in UOWC links.The work yields precise results for the Average Channel Capacity(ACC),Outage Probability(OP),and average Bit Error Rate(BER).Furthermore,to reveal deeper insights,bounds on the ACC and asymptotic results for the OP and average BER are derived.The findings highlight the superior performance of MIMO-RF/UOWC AF systems compared to Single-Input-Single-Output(SISO)-RF/UOWC AF systems.Various factors affecting the Diversity Gain(DG)of the MIMO-RF/UOWC AF system include the number of antennas/apertures,fading parameters of both links,and pointing error parameters.Moreover,while an increase in the AaS effect can result in significant attenuation,it does not determine the achievable DG of the proposed MIMO-RF/UOWC AF relaying system.
基金supported in part by the Natural Science Foundation of China(NSFC)under Grant 61971102in part by the Key Research and Development Program of Zhejiang Province under Grant 2022C01093.
文摘In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.
基金supported by the National Key R&D Program of China(No.2023YFB2905600)the National Natural Science Foundation of China(Nos.62127802,62331004,62305067,U24B20142,U24B20168,and 62427815)the Key Project of Jiangsu Province of China(No.BE2023001-4)。
文摘We demonstrate a 200 m outdoor 2×2 multiple-input multiple-output(MIMO)terahertz(THz)communication system operating at 300 GHz with 200 Gb/s polarization-division multiplexed quadrature phase-shift keying(PDM-QPSK)transmission.We propose an iteratively pruned two-dimensional convolutional neural network(2D CNN)equalizer that adaptively captures polarization crosstalk and temporal nonlinearities through 2D convolution kernels.The system achieves a bit error rate(BER)below the hard-decision forward error correction(HD-FEC)threshold at a lower power of 6 d Bm,while reducing the computational complexity by 30.2%compared to the iteratively pruned one-dimensional(1D)CNN approach.This enables high-capacity and energy-efficient operation in long-distance THz links.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
基金supported by the Natural Science Foundation of China(NSFC)(grant no.62088101).
文摘Recent researches show that it is possible to achieve full-duplex system if the self-interference signal could be cancelled completely for 6G research.The majority of the overall self-interference cancellation is contributed by passive cancellation.The lowest complexity cancellation technique is digital cancellation.Therefore,this paper presents a novel passive cancellation technique based on multi-path effect and a novel digital cancellation method considering nonlinearity factor in full-duplex system.Therein,for passive cancellation method,theoretical analysis is presented and practical experiments show that it can achieve about 50 dB only in 10-cm space.For digital cancellation method,a model based on practical platform is given and it can achieve about 30 dB under high transmit power.In addition,two relay schemes based on full-duplex for two-way relay channel called FD-DF(full-duplex decode-and-forward)and FD-AF(full-duplex amplify-and-forward)are presented.Two proposed schemes can nearly double the system throughputs especially in high signal-to-noise radio regions compared with traditional AF scheme.
基金funded by the National Natural Science Foundation of China(52475580)the Special Foundation of the Taishan Scholar Project(tsqn202211077,tsqn202311077)+3 种基金Shandong Provincial Excellent Overseas Young Scholar Foundation(2023HWYQ-069)the Shandong Provincial Natural Science Foundation(ZR2023ME118,ZR2023QF080)the Natural Science Foundation of Qingdao City(23-2-1-219-zyyd-jch,23-2-1-111-zyyd-jch)the Fundamental Research Funds for the Central Universities(23CX06032A).
文摘The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.
文摘This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.
基金supported by the National Natural Science Foundation of China(No.62271399)the National Key Research and Development Program of China(No.2022YFB1807102)。
文摘For multi-vehicle networks,Cooperative Positioning(CP)technique has become a promising way to enhance vehicle positioning accuracy.Especially,the CP performance could be further improved by introducing Sensor-Rich Vehicles(SRVs)into CP networks,which is called SRV-aided CP.However,the CP system may split into several sub-clusters that cannot be connected with each other in dense urban environments,in which the sub-clusters with few SRVs will suffer from degradation of CP performance.Since Unmanned Aerial Vehicles(UAVs)have been widely used to aid vehicular communications,we intend to utilize UAVs to assist sub-clusters in CP.In this paper,a UAV-aided CP network is constructed to fully utilize information from SRVs.First,the inter-node connection structure among the UAV and vehicles is designed to share available information from SRVs.After that,the clustering optimization strategy is proposed,in which the UAV cooperates with the high-precision sub-cluster to obtain available information from SRVs,and then broadcasts this positioning-related information to other low-precision sub-clusters.Finally,the Locally-Centralized Factor Graph Optimization(LC-FGO)algorithm is designed to fuse positioning information from cooperators.Simulation results indicate that the positioning accuracy of the CP system could be improved by fully utilizing positioning-related information from SRVs.
文摘It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes.
文摘Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.