Aiming at the problem that node load is rarely considered in existing clustering routing algorithm for Wireless Sensor Networks (WSNs), a dynamic clustering routing algorithm for WSN is presented in this paper called ...Aiming at the problem that node load is rarely considered in existing clustering routing algorithm for Wireless Sensor Networks (WSNs), a dynamic clustering routing algorithm for WSN is presented in this paper called DCRCL (Dynamic Clustering Routing Considering Load). This algorithm is comprised of three phases including cluster head (CH) selection, cluster setup and inter-cluster routing. First, the CHs are selected based on residual energy and node load. Then the non-CH nodes choose a cluster by comparing the cost function of its neighbor CHs. At last, each CH communicates with base station by using multi-hop communication. The simulation results show that comparing with the existing one, the techniques life cycle and date volume of the network are increased by 30.7 percent and 29.8 percent respectively by using the proposed algorithm DCRCL.展开更多
In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the c...In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.展开更多
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep...Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.展开更多
This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies o...This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies on the construction of a 2-D logical grid in the geographical region of deployment. The objective of the proposed scheme is to determine optimal or near-optimal (within a defined constant) multiple disjoint paths (multipath) from a source node to the sink, in order to enhance the reliability of the network. The determined multiple disjoint paths would be used by the source node in a round-robin way to balance the traffic across the disjoint paths, and to avoid discovered paths with cell holes. The proposed scheme limits the use of broadcasting to the process of gateway election within each cell, and the process of maintaining the table of neighbors of each gateway. Our simulation results show the effectiveness and scalability of our routing scheme with increased network size compared to on-demand routing protocols.展开更多
Based on the analysis of the existing classic clustering routing algorithm HEED, this paper proposes an efficient dynamic clustering routing algorithm ED-HEED. In the cluster selection process, in order to optimize th...Based on the analysis of the existing classic clustering routing algorithm HEED, this paper proposes an efficient dynamic clustering routing algorithm ED-HEED. In the cluster selection process, in order to optimize the network topology and select more proper nodes as the cluster head, the proposed clustering algorithm considers the shortest path prediction of the node to the destination sink and the congestion situation. In the data transmission procedure, the high-efficiency CEDOR opportunistic routing algorithm is applied into the ED-HEED as the data transmission mode between cluster headers. A novel adaptive dynamic clustering mechanism is also considered into the algorithm, as well as the data redundancy and security control. Our Simulation demonstrates that the ED-HEED algorithm can reduce the energy consumption, prolong the network life and keep the security and availability of the network compared with the HEED algorithm.展开更多
Aiming at the problems of existing clustering routing algorithm of self-energized wireless sensor networks(WSNs) on fixed threshold for resurrection, incapacitates reappoint cluster head in the next round and lack o...Aiming at the problems of existing clustering routing algorithm of self-energized wireless sensor networks(WSNs) on fixed threshold for resurrection, incapacitates reappoint cluster head in the next round and lack of election limit, this paper proposes a novel clustering routing algorithm for self-energized WSNs clustering routing algorithm based on solar energy harvesting(CRBS) algorithm. The algorithm puts forward a threshold sensitive resurrection mechanism, reviving the node when harvesting energy reaches the set soft or hard energy threshold. Meanwhile, combined with current energy harvesting level, cluster head node can decide whether to reappoint the cluster head in the next round. What's more, CRBS optimizes the cluster head election threshold to limit the incompetent node in election. Combined with the solar energy harvesting simulation, the results show that CRBS algorithm can better keep the default cluster head proportion, and outperforms energy balanced clustering with self-energization(EBCS) algorithm in terms of surviving nodes number and the success ratio of data transmission展开更多
Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a c...Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.展开更多
Low Energy Adaptive Clustering Hierarchy(LEACH)is a routing algorithm in agricultural wireless multimedia sensor networks(WMSNs)that includes two kinds of improved protocol,LEACH_D and LEACH_E.In this study,obstacles ...Low Energy Adaptive Clustering Hierarchy(LEACH)is a routing algorithm in agricultural wireless multimedia sensor networks(WMSNs)that includes two kinds of improved protocol,LEACH_D and LEACH_E.In this study,obstacles were overcome in widely used protocols.An improved algorithm was proposed to solve existing problems,such as energy source restriction,communication distance,and energy of the nodes.The optimal number of clusters was calculated by the first-order radio model of the improved algorithm to determine the percentage of the cluster heads in the network.High energy and the near sink nodes were chosen as cluster heads based on the residual energy of the nodes and the distance between the nodes to the sink node.At the same time,the K-means clustering analysis method was used for equally assigning the nodes to several clusters in the network.Both simulation and the verification results showed that the survival number of the proposed algorithm LEACH-ED increased by 66%.Moreover,the network load was high and network lifetime was longer.The mathematical model between the average voltage of nodes(y)and the running time(x)was concluded in the equation y=−0.0643x+4.3694,and the correlation coefficient was R2=0.9977.The research results can provide a foundation and method for the design and simulation of the routing algorithm in agricultural WMSNs.展开更多
为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(bestworst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法。该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用B...为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(bestworst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法。该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,以多跳接力方式将数据发送至汇聚节点。BWAS算法在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加强搜寻过程的指导性。结合动态分簇能量管理,避免网络连续过度使用某个节点,均衡了网络节点能量消耗。通过与基于蚂群算法(ACS)的路由算法仿真比较,本算法减缓了网络节点的能量消耗,延长了网络寿命,在相同时间里具有较少的死亡节点,具有较强的鲁棒性。展开更多
Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide t...Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network. Another is the mode of inter-cluster communication. In this paper, an energy-balanced unequal clustering (EBUC) protocol is proposed and evaluated. By using the particle swarm optimization (PSO) algorithm, EBUC partitions all nodes into clusters of unequal size, in which the clusters closer to the base station have smaller size. The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided. For inter-cluster communication, EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads. Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.展开更多
针对Leach(low energy adaptive clustering hierarchy)协议在大规模网络中存在着数据传输效率不高和网络生命周期短的问题,提出了一种LEACH-CM-NGO优化算法。该方法通过在簇头选取阶段优化簇头数在所有节点中占比,引进能量密度因子和...针对Leach(low energy adaptive clustering hierarchy)协议在大规模网络中存在着数据传输效率不高和网络生命周期短的问题,提出了一种LEACH-CM-NGO优化算法。该方法通过在簇头选取阶段优化簇头数在所有节点中占比,引进能量密度因子和能耗因子改进阈值公式优化簇头分布,并在数据传输阶段,由原本的单跳传输改为多跳方式传输数据,引入基于立方映射方法,自适应权重策略和柯西变异的北方苍鹰优化算法改进簇头间数据传输路径,以提高网络的能效和数据传输效率。仿真结果表明,所提出的方法在减少能耗的同时,显著延长了网络的生命周期并提高了数据传输的成功率。展开更多
文摘Aiming at the problem that node load is rarely considered in existing clustering routing algorithm for Wireless Sensor Networks (WSNs), a dynamic clustering routing algorithm for WSN is presented in this paper called DCRCL (Dynamic Clustering Routing Considering Load). This algorithm is comprised of three phases including cluster head (CH) selection, cluster setup and inter-cluster routing. First, the CHs are selected based on residual energy and node load. Then the non-CH nodes choose a cluster by comparing the cost function of its neighbor CHs. At last, each CH communicates with base station by using multi-hop communication. The simulation results show that comparing with the existing one, the techniques life cycle and date volume of the network are increased by 30.7 percent and 29.8 percent respectively by using the proposed algorithm DCRCL.
文摘In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.
文摘Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.
文摘This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies on the construction of a 2-D logical grid in the geographical region of deployment. The objective of the proposed scheme is to determine optimal or near-optimal (within a defined constant) multiple disjoint paths (multipath) from a source node to the sink, in order to enhance the reliability of the network. The determined multiple disjoint paths would be used by the source node in a round-robin way to balance the traffic across the disjoint paths, and to avoid discovered paths with cell holes. The proposed scheme limits the use of broadcasting to the process of gateway election within each cell, and the process of maintaining the table of neighbors of each gateway. Our simulation results show the effectiveness and scalability of our routing scheme with increased network size compared to on-demand routing protocols.
文摘Based on the analysis of the existing classic clustering routing algorithm HEED, this paper proposes an efficient dynamic clustering routing algorithm ED-HEED. In the cluster selection process, in order to optimize the network topology and select more proper nodes as the cluster head, the proposed clustering algorithm considers the shortest path prediction of the node to the destination sink and the congestion situation. In the data transmission procedure, the high-efficiency CEDOR opportunistic routing algorithm is applied into the ED-HEED as the data transmission mode between cluster headers. A novel adaptive dynamic clustering mechanism is also considered into the algorithm, as well as the data redundancy and security control. Our Simulation demonstrates that the ED-HEED algorithm can reduce the energy consumption, prolong the network life and keep the security and availability of the network compared with the HEED algorithm.
基金supported by the Natural Science Foundation Project of CQ CSTC (2012jj A40040)the Changjiang Scholars and Innovative Research Team in University (IRT1299)the Special Fund of Chongqing Key Laboratory (CSTC)
文摘Aiming at the problems of existing clustering routing algorithm of self-energized wireless sensor networks(WSNs) on fixed threshold for resurrection, incapacitates reappoint cluster head in the next round and lack of election limit, this paper proposes a novel clustering routing algorithm for self-energized WSNs clustering routing algorithm based on solar energy harvesting(CRBS) algorithm. The algorithm puts forward a threshold sensitive resurrection mechanism, reviving the node when harvesting energy reaches the set soft or hard energy threshold. Meanwhile, combined with current energy harvesting level, cluster head node can decide whether to reappoint the cluster head in the next round. What's more, CRBS optimizes the cluster head election threshold to limit the incompetent node in election. Combined with the solar energy harvesting simulation, the results show that CRBS algorithm can better keep the default cluster head proportion, and outperforms energy balanced clustering with self-energization(EBCS) algorithm in terms of surviving nodes number and the success ratio of data transmission
基金This research was supported by X-mind Corps program of National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(No.2019H1D8A1105622)the Soonchunhyang University Research Fund.
文摘Energy conservation is a significant task in the Internet of Things(IoT)because IoT involves highly resource-constrained devices.Clustering is an effective technique for saving energy by reducing duplicate data.In a clustering protocol,the selection of a cluster head(CH)plays a key role in prolonging the lifetime of a network.However,most cluster-based protocols,including routing protocols for low-power and lossy networks(RPLs),have used fuzzy logic and probabilistic approaches to select the CH node.Consequently,early battery depletion is produced near the sink.To overcome this issue,a lion optimization algorithm(LOA)for selecting CH in RPL is proposed in this study.LOA-RPL comprises three processes:cluster formation,CH selection,and route establishment.A cluster is formed using the Euclidean distance.CH selection is performed using LOA.Route establishment is implemented using residual energy information.An extensive simulation is conducted in the network simulator ns-3 on various parameters,such as network lifetime,power consumption,packet delivery ratio(PDR),and throughput.The performance of LOA-RPL is also compared with those of RPL,fuzzy rule-based energyefficient clustering and immune-inspired routing(FEEC-IIR),and the routing scheme for IoT that uses shuffled frog-leaping optimization algorithm(RISARPL).The performance evaluation metrics used in this study are network lifetime,power consumption,PDR,and throughput.The proposed LOARPL increases network lifetime by 20%and PDR by 5%–10%compared with RPL,FEEC-IIR,and RISA-RPL.LOA-RPL is also highly energy-efficient compared with other similar routing protocols.
基金Project on the Integration of Industry,Education and Research of Henan Province(Grant No.142107000055,162107000026)Scientific and Technological Project of Henan Province(Grant No.152102210190,162102210202)+2 种基金Natural Science Foundation of Henan Educational Committee(Grant No.14B416004,14A416002 and 13A416264)Key Project of Henan Tobacco Company(HYKJ201316)Innovation Ability Foundation of Natural Science(Grant No.2013ZCX002)of Henan University of Science and Technology.
文摘Low Energy Adaptive Clustering Hierarchy(LEACH)is a routing algorithm in agricultural wireless multimedia sensor networks(WMSNs)that includes two kinds of improved protocol,LEACH_D and LEACH_E.In this study,obstacles were overcome in widely used protocols.An improved algorithm was proposed to solve existing problems,such as energy source restriction,communication distance,and energy of the nodes.The optimal number of clusters was calculated by the first-order radio model of the improved algorithm to determine the percentage of the cluster heads in the network.High energy and the near sink nodes were chosen as cluster heads based on the residual energy of the nodes and the distance between the nodes to the sink node.At the same time,the K-means clustering analysis method was used for equally assigning the nodes to several clusters in the network.Both simulation and the verification results showed that the survival number of the proposed algorithm LEACH-ED increased by 66%.Moreover,the network load was high and network lifetime was longer.The mathematical model between the average voltage of nodes(y)and the running time(x)was concluded in the equation y=−0.0643x+4.3694,and the correlation coefficient was R2=0.9977.The research results can provide a foundation and method for the design and simulation of the routing algorithm in agricultural WMSNs.
文摘为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(bestworst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法。该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,以多跳接力方式将数据发送至汇聚节点。BWAS算法在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加强搜寻过程的指导性。结合动态分簇能量管理,避免网络连续过度使用某个节点,均衡了网络节点能量消耗。通过与基于蚂群算法(ACS)的路由算法仿真比较,本算法减缓了网络节点的能量消耗,延长了网络寿命,在相同时间里具有较少的死亡节点,具有较强的鲁棒性。
基金supported by the Ph.D.Programs Foundation of Ministry of Education of China (20060611010)the National Basic Research Program of China (2007CB311005)the National Nature Science Foundation of China (60905066)
文摘Clustering provides an effective way to prolong the lifetime of wireless sensor networks. One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network. Another is the mode of inter-cluster communication. In this paper, an energy-balanced unequal clustering (EBUC) protocol is proposed and evaluated. By using the particle swarm optimization (PSO) algorithm, EBUC partitions all nodes into clusters of unequal size, in which the clusters closer to the base station have smaller size. The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided. For inter-cluster communication, EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads. Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.
文摘针对Leach(low energy adaptive clustering hierarchy)协议在大规模网络中存在着数据传输效率不高和网络生命周期短的问题,提出了一种LEACH-CM-NGO优化算法。该方法通过在簇头选取阶段优化簇头数在所有节点中占比,引进能量密度因子和能耗因子改进阈值公式优化簇头分布,并在数据传输阶段,由原本的单跳传输改为多跳方式传输数据,引入基于立方映射方法,自适应权重策略和柯西变异的北方苍鹰优化算法改进簇头间数据传输路径,以提高网络的能效和数据传输效率。仿真结果表明,所提出的方法在减少能耗的同时,显著延长了网络的生命周期并提高了数据传输的成功率。