The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nod...The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.展开更多
It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sens...It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes.展开更多
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ...Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.展开更多
Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been...Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.展开更多
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo...Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.展开更多
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu...In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.展开更多
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD...This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.展开更多
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar...Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios.展开更多
A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions su...A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm.展开更多
Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures a...Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time.To address this issue,this paper presents an innovative energy-efficient protocol based on deep Q-learning(DQN),specifically developed to prolong the operational lifespan of WSNs used in border surveillance.By harnessing the adaptive power of DQN,the proposed protocol dynamically adjusts node activity and communication patterns.This approach ensures optimal energy usage while maintaining high coverage,connectivity,and data accuracy.The proposed system is modeled with 100 sensor nodes deployed over a 1000 m×1000 m area,featuring a strategically positioned sink node.Our method outperforms traditional approaches,achieving significant enhancements in network lifetime and energy utilization.Through extensive simulations,it is observed that the network lifetime increases by 9.75%,throughput increases by 8.85%and average delay decreases by 9.45%in comparison to the similar recent protocols.It demonstrates the robustness and efficiency of our protocol in real-world scenarios,highlighting its potential to revolutionize border surveillance operations.展开更多
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ...Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.展开更多
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different...This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.展开更多
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n...Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.展开更多
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus...Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture.展开更多
In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimen...In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimental results,namely,light intensity factor ∈ and α,to represent the light intensity coefficient and influence factor.The remaining energy consumption of mobile terminal equipment was measured respectively,the distance parameter from device to device,the maximum transmission energy consumption,and the correlation coefficient between environmental parameters and energy consumption parameters was analyzed.This paper discusses the impact of different topological structures on the environment,energy saving and emission reduction in the relatively flat terrain area,based on the planning scheme of parking area within the coverage range of base station signal,the transmission capability of vehicles as mobile device nodes within the coverage range of base station signal,and the signal coverage range of base station under different light intensity.As the distance between the base station and the vehicle mobile device node changes,the maximum transmission energy consumption of the mobile device node is obtained.Based on the above factors,the optimal performance optimization parking scheme and the optimal energy consumption optimization transmission scheme are obtained.展开更多
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu...Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.展开更多
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t...Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment.展开更多
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ...Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks.展开更多
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces...In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.展开更多
基金supported by the National Natural Science Foundation of China(No.62401597)the Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Scientific Research Project of National University of Defense Technology,China(No.ZK22-02)。
文摘The information exchange among satellites is crucial for the implementation of cluster satellite cooperative missions.However,achieving fast perception,rapid networking,and highprecision time synchronization among nodes without the support of the Global Navigation Satellite System(GNSS)and other prior information remains a formidable challenge to real-time wireless networks design.Therefore,a self-organizing network methodology based on multi-agent negotiation is proposed,which autonomously determines the master node through collaborative negotiation and competitive elections.On this basis,a real-time network protocol design is carried out and a high-precision time synchronization method with motion compensation is proposed.Simulation results demonstrate that the proposed method enables rapid networking with the capability of selfdiscovery,self-organization,and self-healing.For a cluster of 8 satellites,the networking time and the reorganization time are less than 4 s.The time synchronization accuracy exceeds 10-10s with motion compensation,demonstrating excellent real-time performance and stability.The research presented in this paper provides a valuable reference for the design and application of spacebased self-organizing networks for satellite cluster.
文摘It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP.
文摘Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions.
文摘Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.
基金partially supported by the National Natural Science Foundation of China(62161016)the Key Research and Development Project of Lanzhou Jiaotong University(ZDYF2304)+1 种基金the Beijing Engineering Research Center of Highvelocity Railway Broadband Mobile Communications(BHRC-2022-1)Beijing Jiaotong University。
文摘In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.
基金supported in part by the National Natural Science Foundation of China(No.61906156).
文摘This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods.
基金the International Scientific Complex“Astana”was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680345).
文摘Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios.
文摘A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm.
基金funded by Sardar Vallabhbhai National Institute of Technology through SEED grant No.Dean(R&C)/SEED Money/2021-22/11153Date:08/02/2022supported by Business Finland EWARE-6G project under 6G Bridge program,and in part by theHorizon Europe(Smart Networks and Services Joint Under taking)program under Grant Agreement No.101096838(6G-XR project).
文摘Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time.To address this issue,this paper presents an innovative energy-efficient protocol based on deep Q-learning(DQN),specifically developed to prolong the operational lifespan of WSNs used in border surveillance.By harnessing the adaptive power of DQN,the proposed protocol dynamically adjusts node activity and communication patterns.This approach ensures optimal energy usage while maintaining high coverage,connectivity,and data accuracy.The proposed system is modeled with 100 sensor nodes deployed over a 1000 m×1000 m area,featuring a strategically positioned sink node.Our method outperforms traditional approaches,achieving significant enhancements in network lifetime and energy utilization.Through extensive simulations,it is observed that the network lifetime increases by 9.75%,throughput increases by 8.85%and average delay decreases by 9.45%in comparison to the similar recent protocols.It demonstrates the robustness and efficiency of our protocol in real-world scenarios,highlighting its potential to revolutionize border surveillance operations.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005Innovation Project of Guangxi Graduate Education under Grant No.YCSW2024313.
文摘Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.
基金funded by Universiti Putra Malaysia under a Geran Putra Inisiatif(GPI)research grant with reference to GP-GPI/2023/9762100.
文摘This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government Ministry of Science and ICT(MIST)(RS-2022-00165225).
文摘Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities.
基金Supported by 2021 Zhanjiang University of Science and Technology"Brand Enhancement Plan"Project:Network Series Course Teaching Team(PPJH202102JXTD)2022 Zhanjiang University of Science and Technology"Brand Enhancement Plan"Project:Network Engineering(PPJHKCSZ-2022301)+1 种基金2023 Zhanjiang Science and Technology Bureau Project:Design and Simulation of Zhanjiang Mangrove Wetland Monitoring Network System(2023B01017)2022 Zhanjiang University of Science and Technology Quality Engineering Project:Audiovisual Language Teaching and Research Office(ZLGC202203).
文摘Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture.
文摘In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimental results,namely,light intensity factor ∈ and α,to represent the light intensity coefficient and influence factor.The remaining energy consumption of mobile terminal equipment was measured respectively,the distance parameter from device to device,the maximum transmission energy consumption,and the correlation coefficient between environmental parameters and energy consumption parameters was analyzed.This paper discusses the impact of different topological structures on the environment,energy saving and emission reduction in the relatively flat terrain area,based on the planning scheme of parking area within the coverage range of base station signal,the transmission capability of vehicles as mobile device nodes within the coverage range of base station signal,and the signal coverage range of base station under different light intensity.As the distance between the base station and the vehicle mobile device node changes,the maximum transmission energy consumption of the mobile device node is obtained.Based on the above factors,the optimal performance optimization parking scheme and the optimal energy consumption optimization transmission scheme are obtained.
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-2-02038).
文摘Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.
文摘Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment.
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region:No.22D01B148Bidding Topics for the Center for Integration of Education and Production and Development of New Business in 2024:No.2024-KYJD05+1 种基金Basic Scientific Research Business Fee Project of Colleges and Universities in Autonomous Region:No.XJEDU2025P126Xinjiang College of Science&Technology School-level Scientific Research Fund Project:No.2024-KYTD01.
文摘Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks.
基金supported by the National Key Research and Development Program of China(No.2021YFB2900504).
文摘In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks.