Free space optical interconnections(FSOIs) are anticipated to become a prevalent technology for short-range high-speed communication. FSOIs use lasers in board-to-board and rack-to-rack communication to achieve impr...Free space optical interconnections(FSOIs) are anticipated to become a prevalent technology for short-range high-speed communication. FSOIs use lasers in board-to-board and rack-to-rack communication to achieve improved performance in next generation servers and are expected to help meet the growing demand for massive amounts of inter-card data communication. An array of transmitters and receivers arranged to create an optical bus for inter-card and card-to-backplane communication could be the solution. However, both chip heating and cooling fans produce temperature gradients and hot air flow that results in air turbulence inside the server, which induces signal fading and, hence, influences the communication performance. In addition, the proximity between neighboring transmitters and receivers in the array leads to crosstalk in the received signal, which further contributes to signal degradation. In this Letter, the primary objective is to experimentally examine the off-axis crosstalk between links in the presence of turbulence inside a server chassis. The effects of geometrical and inter-chassis turbulence characteristics are investigated and first-and second-order statistics are derived.展开更多
Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probabl...Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probably the only reliable method to accurately measure the transceiver performance,suitable for certification as well as for providing feedback for design verification and optimization.Further,multiple-input multiple-output(MIMO)technology is extensively applied for stable connection,high throughput rate,and low latency.In this paper,we provide an overview of the three main methods for evaluating the MIMO OTA performance,namely,the multiprobe anechoic chamber(MPAC)method,the reverberation chamber plus channel emulator(RC+CE)method,and the radiated two-stage(RTS)method,with the aim of providing a useful guideline for developing effective wireless performance testing in future 5G-and-beyond wireless systems.展开更多
文摘Free space optical interconnections(FSOIs) are anticipated to become a prevalent technology for short-range high-speed communication. FSOIs use lasers in board-to-board and rack-to-rack communication to achieve improved performance in next generation servers and are expected to help meet the growing demand for massive amounts of inter-card data communication. An array of transmitters and receivers arranged to create an optical bus for inter-card and card-to-backplane communication could be the solution. However, both chip heating and cooling fans produce temperature gradients and hot air flow that results in air turbulence inside the server, which induces signal fading and, hence, influences the communication performance. In addition, the proximity between neighboring transmitters and receivers in the array leads to crosstalk in the received signal, which further contributes to signal degradation. In this Letter, the primary objective is to experimentally examine the off-axis crosstalk between links in the presence of turbulence inside a server chassis. The effects of geometrical and inter-chassis turbulence characteristics are investigated and first-and second-order statistics are derived.
基金Project supported by the National Natural Science Foundation of China(No.61671203)。
文摘Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probably the only reliable method to accurately measure the transceiver performance,suitable for certification as well as for providing feedback for design verification and optimization.Further,multiple-input multiple-output(MIMO)technology is extensively applied for stable connection,high throughput rate,and low latency.In this paper,we provide an overview of the three main methods for evaluating the MIMO OTA performance,namely,the multiprobe anechoic chamber(MPAC)method,the reverberation chamber plus channel emulator(RC+CE)method,and the radiated two-stage(RTS)method,with the aim of providing a useful guideline for developing effective wireless performance testing in future 5G-and-beyond wireless systems.