期刊文献+
共找到1,197篇文章
< 1 2 60 >
每页显示 20 50 100
Using Heuristics to the Controller Placement Problem in Software-Defined Multihop Wireless Networking
1
作者 Afsane Zahmatkesh Chung-Horng Lung 《Communications and Network》 2020年第4期199-219,共21页
Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generat... Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach. 展开更多
关键词 Software-defined Multihop wireless networking (SDMWN) Controller Placement Problem (CPP) Control Overhead Heuristic Algorithms
在线阅读 下载PDF
Hierarchical detection and tracking for moving targets in underwater wireless sensor networks 被引量:1
2
作者 Yudong Li Hongcheng Zhuang +2 位作者 Long Xu Shengquan Li Haibo Lu 《Digital Communications and Networks》 2025年第2期556-562,共7页
It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sens... It is difficult to improve both energy consumption and detection accuracy simultaneously,and even to obtain the trade-off between them,when detecting and tracking moving targets,especially for Underwater Wireless Sensor Networks(UWSNs).To this end,this paper investigates the relationship between the Degree of Target Change(DoTC)and the detection period,as well as the impact of individual nodes.A Hierarchical Detection and Tracking Approach(HDTA)is proposed.Firstly,the network detection period is determined according to DoTC,which reflects the variation of target motion.Secondly,during the network detection period,each detection node calculates its own node detection period based on the detection mutual information.Taking DoTC as pheromone,an ant colony algorithm is proposed to adaptively adjust the network detection period.The simulation results show that the proposed HDTA with the optimizations of network level and node level significantly improves the detection accuracy by 25%and the network energy consumption by 10%simultaneously,compared to the traditional adaptive period detection schemes. 展开更多
关键词 Underwater wireless sensor networks The degree of target change Mutual information PHEROMONE Adaptive period
在线阅读 下载PDF
A Situational Awareness-Based Framework for Wireless Network Management:Innovations and Applications
3
作者 Gao Peng Zhang Dongchen +3 位作者 Jiang Tao Li Xingzheng Tan Youheng Liu Guanghua 《China Communications》 2025年第7期95-108,共14页
Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been... Wireless networks support numerous terminals,manage large data volumes,and provide diverse services,but the vulnerability to environmental changes leads to increased complexity and costs.Situational awareness has been widely applied in network management,but existing methods fail to find optimal solutions due to the high heterogeneity of base stations,numerous metrics,and complex intercell dependencies.To address this gap,this paper proposes a specialized framework for wireless networks,integrating an evaluation model and control approach.The framework expands the indicator set into four key areas,introduces an evaluation method,and proposes the indicator perturbation greedy(IPG)algorithm and the adjustment scheme selection method based on damping coefficient(DCSS)for effective network optimization.A case study in an urban area demonstrates the framework’s ability to balance and improve network performance,enhancing situational awareness and operational efficiency under dynamic conditions. 展开更多
关键词 communication system control system situation awareness wireless communication system wireless network optimization
在线阅读 下载PDF
Research on Low-Energy Information Transmission Based on Wireless Network
4
作者 Liangkai Zhou Dan Han +1 位作者 Nv Yang Qinzhe Wang 《Journal of Electronic Research and Application》 2025年第5期319-324,共6页
In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimen... In this paper,the topological structure of the vehicle wireless network M2M(Machine to Machine)is used as the experimental research model,and four kinds of light coefficients are set as factors affecting the experimental results,namely,light intensity factor ∈ and α,to represent the light intensity coefficient and influence factor.The remaining energy consumption of mobile terminal equipment was measured respectively,the distance parameter from device to device,the maximum transmission energy consumption,and the correlation coefficient between environmental parameters and energy consumption parameters was analyzed.This paper discusses the impact of different topological structures on the environment,energy saving and emission reduction in the relatively flat terrain area,based on the planning scheme of parking area within the coverage range of base station signal,the transmission capability of vehicles as mobile device nodes within the coverage range of base station signal,and the signal coverage range of base station under different light intensity.As the distance between the base station and the vehicle mobile device node changes,the maximum transmission energy consumption of the mobile device node is obtained.Based on the above factors,the optimal performance optimization parking scheme and the optimal energy consumption optimization transmission scheme are obtained. 展开更多
关键词 wireless network Transmission capacity Coverage area Available energy consumption Optimization scheme
在线阅读 下载PDF
Wireless Sensor Network Modeling and Analysis for Attack Detection
5
作者 Tamara Zhukabayeva Vasily Desnitsky Assel Abdildayeva 《Computer Modeling in Engineering & Sciences》 2025年第8期2591-2625,共35页
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar... Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios. 展开更多
关键词 wireless sensor network MODELING SECURITY ATTACK DETECTION MONITORING
在线阅读 下载PDF
MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks
6
作者 Ru Hao Chi Xu Jing Liu 《Computers, Materials & Continua》 2025年第2期3203-3222,共20页
Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resource... Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely MATD3-CO, for iterative optimization. Specifically, we first decouple SOM into two sub-problems, i.e., joint sub-channel allocation and task offloading sub-problem, and computation resource allocation sub-problem. Then, we propose MATD3 to optimize the sub-channel allocation and task offloading ratio, and employ the convex optimization to allocate the computation resource with a closed-form expression derived by the Karush-Kuhn-Tucker (KKT) conditions. The solution is obtained by iteratively solving these two sub-problems. The experimental results indicate that the MATD3-CO scheme, when compared to the benchmark schemes, significantly decreases system overhead with respect to both delay and energy consumption. 展开更多
关键词 Industrial wireless networks(IWNs) multi-access edge computing(MEC) non-orthogonal multiple access(NOMA) task offloading resource allocation
在线阅读 下载PDF
Joint Probabilistic Scheduling and Resource Allocation for Wireless Networked Control Systems
7
作者 Meng Zheng Lei Zhang Wei Liang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期258-260,共3页
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the... Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works. 展开更多
关键词 subsystem activation probability linear quadratic gaussian control cost number uplink repetitions wireless networked control systems joint probabilistic scheduling resource allocation method psra linear quadratic gaussian lqg G based activation probability subsystems
在线阅读 下载PDF
Mitigating Hotspot Problem Using Northern Goshawk Optimization Based Energy Aware Multi-Hop Communication for Wireless Sensor Networks
8
作者 S.Leones Sherwin Vimalraj J.Lydia 《China Communications》 2025年第2期283-298,共16页
Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo... Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures. 展开更多
关键词 CLUSTERING energy efficiency metaheuristics multihop communication network lifetime wireless sensor networks
在线阅读 下载PDF
Application of Bagging Ensemble Model for Fault Detection in Wireless Sensor Networks
9
作者 Rahul Prasad Baghel R K 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期74-85,共12页
A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions su... A Wireless Sensor Network(WSN)comprises a series of spatially distributed autonomous devices,each equipped with sophisticated sensors.These sensors play a crucial role in monitoring diverse environmental conditions such as light intensity,air pressure,temperature,humidity,wind,etc.These sensors are generally deployed in harsh and hostile conditions;hence they suffer from different kinds of faults.However,identifying faults in WSN data remains a complex task,as existing fault detection methods,including centralized,distributed,and hybrid approaches,rely on the spatio⁃temporal correlation among sensor nodes.Moreover,existing techniques predominantly leverage classification⁃based machine learning methods to discern the fault state within WSN.In this paper,we propose a regression⁃based bagging method to detect the faults in the network.The proposed bagging method is consisted of GRU(Gated Recurrent Unit)and Prophet model.Bagging allows weak learners to combine efforts to outperform a strong learner,hence it is appropriate to use in WSN.The proposed bagging method was first trained at the base station,then they were deployed at each SN(Sensor Node).Most of the common faults in WSN,such as transient,intermittent and permanent faults,were considered.The validity of the proposed scheme was tested using a trusted online published dataset.Using experimental studies,compared to the latest state⁃of⁃the⁃art machine learning models,the effectiveness of the proposed model is shown for fault detection.Performance evaluation in terms of false positive rate,accuracy,and false alarm rate shows the efficiency of the proposed algorithm. 展开更多
关键词 fault detection GRU PROPHET deep learning wireless sensor networks
在线阅读 下载PDF
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
10
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 CLUSTERING data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
Dynamic Multi-Target Jamming Channel Allocation and Power Decision-Making in Wireless Communication Networks:A Multi-Agent Deep Reinforcement Learning Approach
11
作者 Peng Xiang Xu Hua +4 位作者 Qi Zisen Wang Dan Zhang Yue Rao Ning Gu Wanyi 《China Communications》 2025年第5期71-91,共21页
This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD... This paper studies the problem of jamming decision-making for dynamic multiple communication links in wireless communication networks(WCNs).We propose a novel jamming channel allocation and power decision-making(JCAPD)approach based on multi-agent deep reinforcement learning(MADRL).In high-dynamic and multi-target aviation communication environments,the rapid changes in channels make it difficult for sensors to accurately capture instantaneous channel state information.This poses a challenge to make centralized jamming decisions with single-agent deep reinforcement learning(DRL)approaches.In response,we design a distributed multi-agent decision architecture(DMADA).We formulate multi-jammer resource allocation as a multiagent Markov decision process(MDP)and propose a fingerprint-based double deep Q-Network(FBDDQN)algorithm for solving it.Each jammer functions as an agent that interacts with the environment in this framework.Through the design of a reasonable reward and training mechanism,our approach enables jammers to achieve distributed cooperation,significantly improving the jamming success rate while considering jamming power cost,and reducing the transmission rate of links.Our experimental results show the FBDDQN algorithm is superior to the baseline methods. 展开更多
关键词 jamming resource allocation JCAPD MADRL wireless communication countermeasure wireless communication networks
在线阅读 下载PDF
Optimizing wireless sensor network topology with node load consideration
12
作者 Ruizhi CHEN 《虚拟现实与智能硬件(中英文)》 2025年第1期47-61,共15页
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus... Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture. 展开更多
关键词 Node load wireless sensor network K-means clustering Firefly algorithm Topology optimization
在线阅读 下载PDF
Sine-Polynomial Chaotic Map(SPCM):A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks
13
作者 David S.Bhatti Annas W.Malik +1 位作者 Haeung Choi Ki-Il Kim 《Computers, Materials & Continua》 2025年第10期2157-2177,共21页
Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a n... Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies,limiting their use for lightweight,secure image encryption in resource-constrained Wireless Sensor Networks(WSNs).We propose the SPCM,a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions,leveraging a piecewise function to achieve a broad chaotic range()and a high Lyapunov exponent(5.04).Validated through nine benchmarks,including standard randomness tests,Diehard tests,and Shannon entropy(3.883),SPCM demonstrates superior randomness and high sensitivity to initial conditions.Applied to image encryption,SPCM achieves 0.152582 s(39%faster than some techniques)and 433.42 KB/s throughput(134%higher than some techniques),setting new benchmarks for chaotic map-based methods in WSNs.Chaos-based permutation and exclusive or(XOR)diffusion yield near-zero correlation in encrypted images,ensuring strong resistance to Statistical Attacks(SA)and accurate recovery.SPCM also exhibits a strong avalanche effect(bit difference),making it an efficient,secure solution for WSNs in domains like healthcare and smart cities. 展开更多
关键词 Chaos theory chaotic system image encryption CRYPTOGRAPHY wireless sensor networks(WSNs)
在线阅读 下载PDF
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
14
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks
15
作者 Peng Zhou Wei Chen Bingyu Cao 《Computers, Materials & Continua》 2025年第9期5337-5360,共24页
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ... Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks. 展开更多
关键词 Internet of Things wireless sensor networks ant colony optimization clustering algorithm energy efficiency
在线阅读 下载PDF
Resource allocation algorithm for downlink secure transmission in wireless EH cooperative networks with idle relay-assisted jamming
16
作者 Xintong Zhou Kun Xiao Feng Ke 《Digital Communications and Networks》 2025年第3期829-836,共8页
In wireless Energy Harvesting(EH)cooperative networks,we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission.Initially,we establish a model for a multi... In wireless Energy Harvesting(EH)cooperative networks,we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission.Initially,we establish a model for a multi-relay cooperative network incorporating wireless energy harvesting,spectrum sharing,and system power constraints,focusing on physical layersecurity transmission in the presence of eavesdropping nodes.In this model,the source node transmits signals while injecting Artificial Noise(AN)to mitigate eavesdropping risks,and an idle relay can act as a jamming node to assist in this process.Based on this model,we formulate an optimization problem for maximizing system secure harvesting energy efficiency,this problem integrates constraints on total power,bandwidth,and AN allocation.We proceed by conducting a mathematical analysis of the optimization problem,deriving optimal solutions for secure energy-saving resource allocation,this includes strategies for power allocation at the source and relay nodes,bandwidth allocation among relays,and power splitting for the energy harvesting node.Thus,we propose a secure resource allocation algorithm designed to maximize secure harvesting energy efficiency.Finally,we validate the correctness of the theoretical derivation through Monte Carlo simulations,discussing the impact of parameters such as legitimate channel gain,power splitting factor,and the number of relays on secure harvesting energy efficiency of the system.The simulation results show that the proposed secure energy-saving resource allocation algorithm effectively enhances the security performance of the system. 展开更多
关键词 wireless cooperative network Physical layer security Energy harvesting Resource allocation Spectrum sharing Secure energy efficiency
在线阅读 下载PDF
Application Research of Wireless Sensor Networks and the Internet of Things
17
作者 Changjian Lv Rui Wang Man Zhao 《Journal of Electronic Research and Application》 2025年第4期283-289,共7页
In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee... In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers. 展开更多
关键词 wireless Sensor Networks Internet of Things Key technologies Application fields
在线阅读 下载PDF
Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan
18
作者 Nimisha Rajput Amit Kumar +3 位作者 Raghavendra Pal Nishu Gupta Mikko Uitto Jukka Mäkelä 《Computer Modeling in Engineering & Sciences》 2025年第6期3839-3859,共21页
Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures a... Wireless Sensor Networks(WSNs)play a critical role in automated border surveillance systems,where continuous monitoring is essential.However,limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time.To address this issue,this paper presents an innovative energy-efficient protocol based on deep Q-learning(DQN),specifically developed to prolong the operational lifespan of WSNs used in border surveillance.By harnessing the adaptive power of DQN,the proposed protocol dynamically adjusts node activity and communication patterns.This approach ensures optimal energy usage while maintaining high coverage,connectivity,and data accuracy.The proposed system is modeled with 100 sensor nodes deployed over a 1000 m×1000 m area,featuring a strategically positioned sink node.Our method outperforms traditional approaches,achieving significant enhancements in network lifetime and energy utilization.Through extensive simulations,it is observed that the network lifetime increases by 9.75%,throughput increases by 8.85%and average delay decreases by 9.45%in comparison to the similar recent protocols.It demonstrates the robustness and efficiency of our protocol in real-world scenarios,highlighting its potential to revolutionize border surveillance operations. 展开更多
关键词 wireless sensor networks(WSNs) energy efficiency reinforcement learning network lifetime dynamic node management autonomous surveillance
在线阅读 下载PDF
Dynamic Clustering Method for Underwater Wireless Sensor Networks based on Deep Reinforcement Learning
19
作者 Kohyar Bolvary Zadeh Dashtestani Reza Javidan Reza Akbari 《哈尔滨工程大学学报(英文版)》 2025年第4期864-876,共13页
Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of t... Underwater wireless sensor networks(UWSNs)have emerged as a new paradigm of real-time organized systems,which are utilized in a diverse array of scenarios to manage the underwater environment surrounding them.One of the major challenges that these systems confront is topology control via clustering,which reduces the overload of wireless communications within a network and ensures low energy consumption and good scalability.This study aimed to present a clustering technique in which the clustering process and cluster head(CH)selection are performed based on the Markov decision process and deep reinforcement learning(DRL).DRL algorithm selects the CH by maximizing the defined reward function.Subsequently,the sensed data are collected by the CHs and then sent to the autonomous underwater vehicles.In the final phase,the consumed energy by each sensor is calculated,and its residual energy is updated.Then,the autonomous underwater vehicle performs all clustering and CH selection operations.This procedure persists until the point of cessation when the sensor’s power has been reduced to such an extent that no node can become a CH.Through analysis of the findings from this investigation and their comparison with alternative frameworks,the implementation of this method can be used to control the cluster size and the number of CHs,which ultimately augments the energy usage of nodes and prolongs the lifespan of the network.Our simulation results illustrate that the suggested methodology surpasses the conventional low-energy adaptive clustering hierarchy,the distance-and energy-constrained K-means clustering scheme,and the vector-based forward protocol and is viable for deployment in an actual operational environment. 展开更多
关键词 Underwater wireless sensor network CLUSTERING Cluster head selection Deep reinforcement learning
暂未订购
Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation
20
作者 Xiaogang Yuan Huan Pei Yanlin Wu 《Computers, Materials & Continua》 2025年第9期5555-5575,共21页
In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stabili... In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value. 展开更多
关键词 wireless sensor networks intrusion detection dynamic trust evaluation data noise detection trust recovery mechanism
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部