A computational and test method for calibrating the flight loads carried by aircraft wings is proposed.The wing load is measured in real-time based on the resistance and fiber Bragg grating strain gauges.The linear st...A computational and test method for calibrating the flight loads carried by aircraft wings is proposed.The wing load is measured in real-time based on the resistance and fiber Bragg grating strain gauges.The linear stepwise regression method is used to construct the load equations.The mean impact value algorithm is employed to select suitable bridges.In the ground calibration experiment,the wing load calculation equations in both forward and reverse installation states are calibrated.The correctness of the load equations was verified through equation error and inspection error analysis.Finally,the actual flight load of the wing was obtained through flight tests.展开更多
High-aspect-ratio aircraft are widely used in military and civilian fields,such as reconnaissance,surveillance,and attacks,due to their high lift-to-drag ratio,strong payload capability,significant endurance effect,an...High-aspect-ratio aircraft are widely used in military and civilian fields,such as reconnaissance,surveillance,and attacks,due to their high lift-to-drag ratio,strong payload capability,significant endurance effect,and good stealth performance.However,compared to conventional aircraft,high-aspect-ratio aircraft are more susceptible to gust disturbances during flight.In response to this phenomenon,a full-scale dynamic model of a high-aspect-ratio unmanned aerial vehicle was developed.Considering the coupling among control surfaces,structural forces,and aerodynamic forces,along with sensor,actuator,and delay effects,an H_(∞)control law was designed using the principle of singular value energy flow reduction and weighted function,with a PID(Proportional-Integral-Derivative)control law for comparison.The two controllers were then subjected to pulse-response and jury stability tests.Finally,wind tunnel tests were conducted to investigate the gust alleviation principle,in which gust disturbances were generated using gust generators and control surface self-excitation.The results present that the average wing root bending moment and wing tip overload under the PID control law decrease by approximately 30%,while under the H_(∞)control law,both the average wing root bending moment and wing tip overload reduction rate exceed 50%,with peaks reaching 60%.This validates the feasibility and efficiency of the designed H_(∞)controller.展开更多
An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibra...An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibration control of engineering structures. In this paper, piezoelectric materials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton's principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alleviation(GLA) control system is proposed. The gust load alleviation system employs classic propor tional-integral-derivative(PID) controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezoelectric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Furthermore, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wingtip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%.展开更多
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force bala...The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.展开更多
The aim of this study is to identify the influence of the dip angle of a pre-existing macrocrack on the lifetime and ultimate deformation of rock-like material. Prediction of lifetime has been studied for three groups...The aim of this study is to identify the influence of the dip angle of a pre-existing macrocrack on the lifetime and ultimate deformation of rock-like material. Prediction of lifetime has been studied for three groups of specimens under axial static compressive load levels. The specimens were investigated from 65% to 85% of UCS(uniaxial compressive strength) at an interval of 10% of UCS for the groups of specimens with a single modelled open flaw with a dip angle to the loading direction of 30°(first group), at an interval of 5% of UCS increment for the groups of specimens with single(second group), and double sequential open flaws with a dip angle to the loading direction of 60°(third group). This study shows that crack propagation in specimens with a single flaw follows the same sequences. At first, wing cracks appear, and then shear crack develops from the existing wing cracks. Shear cracking is responsible for specimen failure in all three groups. A slip is expected in specimens from the third group which connects two individual modelled open flaws. The moment of the slip is noticed as a characteristic rise in the axial deformation at a constant load level. It is also observed that axial deformation versus time follows the same pattern, irrespective of local geometry. Specimens from the first group exhibit higher axial deformation under different load levels in comparison with the specimens from the second and third groups.展开更多
A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical c...A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound- ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti- tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex- ible wings.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11602237)the Middleaged and Young Teachers’Basic Ability Promotion Project of Guangxi(Grant No.2022KY1070)。
文摘A computational and test method for calibrating the flight loads carried by aircraft wings is proposed.The wing load is measured in real-time based on the resistance and fiber Bragg grating strain gauges.The linear stepwise regression method is used to construct the load equations.The mean impact value algorithm is employed to select suitable bridges.In the ground calibration experiment,the wing load calculation equations in both forward and reverse installation states are calibrated.The correctness of the load equations was verified through equation error and inspection error analysis.Finally,the actual flight load of the wing was obtained through flight tests.
基金supported by the National Natural Science Foundation of China(Nos.12272104,U22B2013).
文摘High-aspect-ratio aircraft are widely used in military and civilian fields,such as reconnaissance,surveillance,and attacks,due to their high lift-to-drag ratio,strong payload capability,significant endurance effect,and good stealth performance.However,compared to conventional aircraft,high-aspect-ratio aircraft are more susceptible to gust disturbances during flight.In response to this phenomenon,a full-scale dynamic model of a high-aspect-ratio unmanned aerial vehicle was developed.Considering the coupling among control surfaces,structural forces,and aerodynamic forces,along with sensor,actuator,and delay effects,an H_(∞)control law was designed using the principle of singular value energy flow reduction and weighted function,with a PID(Proportional-Integral-Derivative)control law for comparison.The two controllers were then subjected to pulse-response and jury stability tests.Finally,wind tunnel tests were conducted to investigate the gust alleviation principle,in which gust disturbances were generated using gust generators and control surface self-excitation.The results present that the average wing root bending moment and wing tip overload under the PID control law decrease by approximately 30%,while under the H_(∞)control law,both the average wing root bending moment and wing tip overload reduction rate exceed 50%,with peaks reaching 60%.This validates the feasibility and efficiency of the designed H_(∞)controller.
基金supported by the National Key Research and Development Program (2016YFB 0200703)
文摘An active control technique utilizing piezoelectric actuators to alleviate gust-response loads of a large-aspect-ratio flexible wing is investigated. Piezoelectric materials have been extensively used for active vibration control of engineering structures. In this paper, piezoelectric materials further attempt to suppress the vibration of the aeroelastic wing caused by gust. The motion equation of the flexible wing with piezoelectric patches is obtained by Hamilton's principle with the modal approach, and then numerical gust responses are analyzed, based on which a gust load alleviation(GLA) control system is proposed. The gust load alleviation system employs classic propor tional-integral-derivative(PID) controllers which treat piezoelectric patches as control actuators and acceleration as the feedback signal. By a numerical method, the control mechanism that piezoelectric actuators can be used to alleviate gust-response loads is also analyzed qualitatively. Furthermore, through low-speed wind tunnel tests, the effectiveness of the gust load alleviation active control technology is validated. The test results agree well with the numerical results. Test results show that at a certain frequency range, the control scheme can effectively alleviate the z and x wingtip accelerations and the root bending moment of the wing to a certain extent. The control system gives satisfying gust load alleviation efficacy with the reduction rate being generally over 20%.
基金supported by the National Natural Science Foundation of China(11072142)Shanghai Program for Innovative Research Team in Universities
文摘The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.
文摘The aim of this study is to identify the influence of the dip angle of a pre-existing macrocrack on the lifetime and ultimate deformation of rock-like material. Prediction of lifetime has been studied for three groups of specimens under axial static compressive load levels. The specimens were investigated from 65% to 85% of UCS(uniaxial compressive strength) at an interval of 10% of UCS for the groups of specimens with a single modelled open flaw with a dip angle to the loading direction of 30°(first group), at an interval of 5% of UCS increment for the groups of specimens with single(second group), and double sequential open flaws with a dip angle to the loading direction of 60°(third group). This study shows that crack propagation in specimens with a single flaw follows the same sequences. At first, wing cracks appear, and then shear crack develops from the existing wing cracks. Shear cracking is responsible for specimen failure in all three groups. A slip is expected in specimens from the third group which connects two individual modelled open flaws. The moment of the slip is noticed as a characteristic rise in the axial deformation at a constant load level. It is also observed that axial deformation versus time follows the same pattern, irrespective of local geometry. Specimens from the first group exhibit higher axial deformation under different load levels in comparison with the specimens from the second and third groups.
基金supported by the National Natural Science Foundation of China(Nos.11302011,11172025)the National Natural Science Foundation for Youth of China(No.11402013)
文摘A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisci- plinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter bound- ary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quanti- tative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flex- ible wings.