期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight 被引量:18
1
作者 Yongliang Yu Binggang Tong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期218-227,共10页
A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during in... A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke. 展开更多
关键词 Insect forward flight wing flapping Stroke asymmetry Oblique stroke plane Theoretical modeling.
在线阅读 下载PDF
Experimental Study on the Effect of Increased Downstroke Duration for an FWAV with Morphing-coupled Wing Flapping Configuration 被引量:2
2
作者 Ang Chen Bifeng Song +3 位作者 ZhiheWang Kang Liu Dong Xue Xiaojun Yang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期192-208,共17页
This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system bas... This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform. 展开更多
关键词 flapping wing aerial vehicle(FWAV) Downstroke ratio Bio-inspired design Morphing-coupled flapping
在线阅读 下载PDF
Kinematic and Aerodynamic Modelling of Bi- and Quad-Wing Flapping Wing Micro-Air-Vehicle 被引量:1
3
作者 Harijono Djojodihardjo Alif Syamim S. Ramli +1 位作者 Surjatin Wiriadidjaja Azmin Shakrine Mohd Rafie 《Advances in Aerospace Science and Technology》 2016年第3期83-101,共19页
A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc... A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work. 展开更多
关键词 Bi-wing Ornithopter flapping wing Aerodynamics flapping wing Ornithopter Micro Air Vehicle Quad-wing Ornithopter
在线阅读 下载PDF
Mass-spring system modelling for biplane membrane flapping wings
4
作者 Anh Tuan Nguyen Thanh Dong Pham +3 位作者 Vu Dan Thanh Le Quoc Tru Vu Jae-Hung Han Sang-Woo Kim 《Acta Mechanica Sinica》 2025年第9期73-84,共12页
This paper presents a novel modelling method to study the thrust generation mechanism of biplane flapping wings made of thin and highly deformable membrane.Based on the principle of strain energy equivalence,the membr... This paper presents a novel modelling method to study the thrust generation mechanism of biplane flapping wings made of thin and highly deformable membrane.Based on the principle of strain energy equivalence,the membrane structures were modelled by mass-spring systems.The aerodynamic loads were calculated by a simplified quasi-steady aerodynamic model with consideration of the clap-and-fling mechanism.The impact force was introduced into the system when two wing surfaces were in contact.For wing-dynamics simulation problems,convergence analyses were conducted to obtain suitable mesh resolution.To validate the present modelling method,the predicted thrust and required power of a biplane flapping-wing air vehicle were compared with the experimental data.The effect of the forward speed was also analyzed in this paper.It was shown that as the forward speed increases the thrust production efficiency becomes lower together with smaller wing deformation. 展开更多
关键词 Biplane flapping wings Membrane structures Mass-spring system Multibody dynamics
原文传递
Modeling of Flapping Wing Aerial Vehicle Using Hybrid Phase-functioned Neural Network Based on Flight Data
5
作者 Zhihao Zhao Zhiling Jiang +1 位作者 Chenyang Zhang Guanghua Song 《Journal of Bionic Engineering》 2025年第3期1126-1142,共17页
Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win... Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles. 展开更多
关键词 flapping wing aerial vehicle flapping phase Modeling Neural networks
在线阅读 下载PDF
Bio-inspired passive design of flapping-wing micro air vehicles
6
作者 Xiufeng YANG Mingjing QI 《Chinese Journal of Aeronautics》 2025年第10期360-362,共3页
Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal... Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal tools for reconnaissance and rescue missions.1 However,the operation of FMAVs relies on coordinating multiple forces with different scaling effects,posing challenges to miniaturization design. 展开更多
关键词 coordinating multiple forces reconnaissance rescue missions accessing narrow micro air vehicles conventional vehicles flapping wing miniaturization design passive design
原文传递
Self-Locking Stability Effect Induced by Downwash Flow of the Flapping Wing Rotor
7
作者 Si Chen Lihua Yuan +7 位作者 Jiawei Xiang Yuanyuan He Peng Zhang Yuanhao Cheng Yinjun Pan Shijun Guo Ye Xie Juan Wang 《Journal of Bionic Engineering》 2025年第5期2429-2443,共15页
Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study ... Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study the downwash flow’s effect on the stability of the FWR.After simulation,a cone like self-lock region which acts as the critical condition determining the stability of FWR is found.Only when the flow’s resultant velocity acting on the control surface lies in the stable region,the FWR can keep stable.The size of the cone like self-lock stable region can be enlarged by increasing the maximum feasible deflection angle constrained by mechanical design or enhancing the equivalent downwash flow velocity.Among all the simulated cases,when J=2.67(f=5 Hz,■=5 r/s),the largest average equivalent downwash flow velocities are found.On the other hand,the recovery torque could be enhanced due to the increase of the arm of the lateral force.According to these simulation results,a 43 g FWR model with two control surfaces and two stabilizers is then designed.A series of flight tests is then conducted to help confirm the conclusion of the mechanism research in this work.Overall,this study points out several strategies to increase the flight stability of the FWR and finally realizes the stable climb flight and mild descent flight of the FWR. 展开更多
关键词 flapping wing rotor Downwash flow Self-lock stable region
在线阅读 下载PDF
Flapping wing micro-aerial-vehicle: Kinematics, membranes, and flapping mechanisms of ornithopter and insect flight 被引量:9
8
作者 Mohd Firdaus Bin Abas Azmin Shakrine Bin Mohd Rafie +1 位作者 Hamid Bin Yusoff Kamarul Arifin Bin Ahmad 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1159-1177,共19页
The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micr... The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micro-aerial-vehicles (MAV), leaving a vast range of development possi- bilities that MAVs have to offer. Because of the prompt advancement into the NAV research devel- opment, the true potential and challenges presented by MAV development were never solved, understood, and truly uncovered, especially under the influence of transition and low Reynolds number flow characteristics. This paper reviews a part of previous MAV research developments which are deemed important of notification; kinematics, membranes, and flapping mechanisms ranges from small birds to big insects, which resides within the transition and low Reynolds number regimes. This paper also reviews the possibility of applying a piezoelectric transmission used to pro- duce NAV flapping wing motion and mounted on a MAV, replacing the conventional motorized flapping wing transmission. Findings suggest that limited work has been done for MAVs matching these criteria. The preferred research approach has seen bias towards numerical analysis as compared to experimental analysis. 展开更多
关键词 flapping wing kinematics INSECT Membrane wing Micro-air-vehicle Ornithopter
原文传递
Design and experimental study of a new flapping wing rotor micro aerial vehicle 被引量:10
9
作者 Xin DONG Daochun LI +1 位作者 Jinwu XIANG Ziyu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3092-3099,共8页
A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is... A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is designed to drive the three flapping wings and generate lift,and control mechanisms are designed to control the pose of the FWR-MAV.A flight control board for attitude control with robust onboard attitude estimation and a control algorithm is also developed to perform stable hovering flight and forward flight.A series of flight tests was conducted,with hovering flight and forward flight tests performed to optimize the control parameters and assess the performance of the FWR-MAV.The hovering flight test shows the ability of the FWR-MAV to counteract the moment generated by rotary motion and maintain the attitude of the FWR-MAV in space;the experiment of forward flight shows that the FWR-MAV can track the desired attitude. 展开更多
关键词 Attitude estimation flapping wing rotor Flight control Flight tests Micro aerial vehicle(MAV)
原文传递
A Review of Research on the Mechanical Design of Hoverable Flapping Wing Micro-Air Vehicles 被引量:6
10
作者 Shengjie Xiao Kai Hu +2 位作者 Binxiao Huang Huichao Deng Xilun Ding 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1235-1254,共20页
Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles i... Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles in wings to actively control the flight performance,while insects control their flight with muscles based on wing root along with wing’s passive deformation.Based on the above flight principles of birds and insects,Flapping Wing Micro Air Vehicles(FWMAVs)are classified as either bird-inspired or insect-inspired FWMAVs.In this review,the research achievements on mechanisms of insect-inspired,hoverable FWMAVs over the last ten years(2011-2020)are provided.We also provide the definition,function,research status and development prospect of hoverable FWMAVs.Then discuss it from three aspects:bio-inspiration,motor-driving mechanisms and intelligent actuator-driving mechanisms.Following this,research groups involved in insect-inspired,hoverable FWMAV research and their major achievements are summarized and classified in tables.Problems,trends and challenges about the mechanism are compiled and presented.Finally,this paper presents conclusions about research on mechanical structure,and the future is discussed to enable further research interests. 展开更多
关键词 Hoverable flapping wing Insect-inspired Mechanical design Motor drive Intelligent actuator
在线阅读 下载PDF
Review on ultra-lightweight flapping-wing nano air vehicles:Artificial muscles,flight control mechanism,and biomimetic wings 被引量:7
11
作者 Liang WANG Bifeng SONG +1 位作者 Zhongchao SUN Xiaojun YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期63-91,共29页
Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant r... Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance. 展开更多
关键词 Actuators Artificial muscle Biomimetic wings flapping wing Flight control mechanism Nano Air Vehicles(NAVs)
原文传递
Nonlinear dynamics of a flapping rotary wing:Modeling and optimal wing kinematic analysis 被引量:9
12
作者 Qiuqiu WEN Shijun GUO +1 位作者 Hao LI Wei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1041-1052,共12页
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic p... The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement. 展开更多
关键词 Dynamic model Dynamic time-lag flapping rotary wing Kinematics of wings Passive rotation Strike angle
原文传递
A Bio-Inspired Flapping-Wing Robot With Cambered Wings and Its Application in Autonomous Airdrop 被引量:5
13
作者 Haifeng Huang Wei He +2 位作者 Qiang Fu Xiuyu He Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2138-2150,共13页
Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some i... Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some ingenious flapping-wing robots have been designed during the past two decades, development and application of autonomous flapping-wing robots are less successful and still require further research. Here, we report the development of a servo-driven bird-like flapping-wing robot named USTBird-I and its application in autonomous airdrop.Inspired by birds, a camber structure and a dihedral angle adjustment mechanism are introduced into the airfoil design and motion control of the wings, respectively. Computational fluid dynamics simulations and actual flight tests show that this bionic design can significantly improve the gliding performance of the robot, which is beneficial to the execution of the airdrop mission.Finally, a vision-based airdrop experiment has been successfully implemented on USTBird-I, which is the first demonstration of a bird-like flapping-wing robot conducting an outdoor airdrop mission. 展开更多
关键词 Autonomous airdrop bionic design bio-inspired robot cambered wing flapping wing
在线阅读 下载PDF
Modeling and flapping vibration suppression of a novel tailless flapping wing micro air vehicle 被引量:4
14
作者 Siqi WANG Bifeng SONG +2 位作者 Ang CHEN Qiang FU Jin CUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期309-328,共20页
This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWM... This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWMAV),named NPU-Tinybird.Firstly,a complete modeling of NPU-Tinybird is determined,including the aerodynamic model based on the quasi-steady method,the kinematic and dynamic model about the mechanism of flapping and attitude control,combined with the single rigid body dynamic model.Based on this,a linearized longitudinal pitch dynamic cycle-averaged model is obtained and analyzed through the methods of neural network fitting and system identification,preparing for the design of flapping vibration suppression observer.Flapping vibration is an inherent property of the tailless FWMAV,which arises from the influence of time-periodic aerodynamic forces and moments.It can be captured by attitude and position sensors on the plane,which impairs the flight performance and efficiency of flight controller and actuators.To deal with this problem,a novel state observer for flapping vibration suppression is designed.A robust optimal controller based on the linear quadratic theory is also designed to stabilize the closed-loop system.Simulation results are given to verify the performance of the observer,including the closed loop responses combined with robust optimal controller,the comparison of different parameters of observer and the comparison with several classic methods,such as Kalman filter,H-infinity filter and low-pass filter,which prove that the novel observer owns a fairly good suppression effect on flapping vibration and benefits for the improvement of flight performance and control efficiency. 展开更多
关键词 flapping vibration flapping wing Linear quadratic theory Robust control State observer
原文传递
Human Memory/Learning Inspired Control Method for Flapping-Wing Micro Air Vehicles 被引量:3
15
作者 Garv Lebbv 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期127-133,共7页
The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flappi... The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness. 展开更多
关键词 flapping wing micro air vehicle BIO-INSPIRED memory-based control
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部