The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at a...The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.展开更多
The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f...The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).展开更多
In the present study, the performance of the NTNU Blind Test 1 wind turbine is analyzed in the computational fluid dynamics (CFD) simulations by using the CFD code FANS with structured overset grids. First, the numeri...In the present study, the performance of the NTNU Blind Test 1 wind turbine is analyzed in the computational fluid dynamics (CFD) simulations by using the CFD code FANS with structured overset grids. First, the numerical methods including the governing equations, the turbulence closure model, and the flow solver are introduced. In addition, the NTNU BT1 wind tunnel experiment is described. Then, structured overset grid blocks are generated in the computational domain with fully resolved wind turbine geometry, including the blades, hub, nacelle, and tower. Afterward, unsteady Reynolds averaged Navier-Stokes (RANS) simulations with the two-layer k - ε turbulence model are performed with an inlet velocity of 10 m/s and a tip-speed ratio (TSR) of 6. The overset-grid capability of FANS is leveraged to handle the rotation of the rotor. Finally, simulations are performed for a range of TSRs and a comparison is made among the present CFD results, other numerical results obtained from representative methods, and the experimental data. It is observed that the CFD-predicted thrust coefficients match the experimental measurement at low TSRs while under-predicting the values at high TSRs, and potential reasons for this deviation are discussed.展开更多
文摘The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.
基金Project(U1334203) supported by the National Natural Science Foundation of China
文摘The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).
基金Project supported by the National Natural Science Foundation of China(Grant No.52131102).
文摘In the present study, the performance of the NTNU Blind Test 1 wind turbine is analyzed in the computational fluid dynamics (CFD) simulations by using the CFD code FANS with structured overset grids. First, the numerical methods including the governing equations, the turbulence closure model, and the flow solver are introduced. In addition, the NTNU BT1 wind tunnel experiment is described. Then, structured overset grid blocks are generated in the computational domain with fully resolved wind turbine geometry, including the blades, hub, nacelle, and tower. Afterward, unsteady Reynolds averaged Navier-Stokes (RANS) simulations with the two-layer k - ε turbulence model are performed with an inlet velocity of 10 m/s and a tip-speed ratio (TSR) of 6. The overset-grid capability of FANS is leveraged to handle the rotation of the rotor. Finally, simulations are performed for a range of TSRs and a comparison is made among the present CFD results, other numerical results obtained from representative methods, and the experimental data. It is observed that the CFD-predicted thrust coefficients match the experimental measurement at low TSRs while under-predicting the values at high TSRs, and potential reasons for this deviation are discussed.