Most wind turbine blades are assembled piece-by-piece onto the hub of a monopile-type offshore wind turbine using jack-up crane vessels.Despite the stable foundation of the lifting cranes,the mating process exhibits s...Most wind turbine blades are assembled piece-by-piece onto the hub of a monopile-type offshore wind turbine using jack-up crane vessels.Despite the stable foundation of the lifting cranes,the mating process exhibits substantial relative responses amidst blade root and hub.These relative motions are combined effects of wave-induced monopile motions and wind-induced blade root motions,which can cause impact loads at the blade root’s guide pin in the course of alignment procedure.Environmental parameters including the wind-wave misalignments play an important role for the safety of the installation tasks and govern the impact scenarios.The present study investigates the effects of wind-wave misalignments on the blade root mating process on a monopile-type offshore wind turbine.The dynamic responses including the impact velocities between root and hub in selected wind-wave misalignment conditions are investigated using multibody simulations.Furthermore,based on a finite element study,different impact-induced failure modes at the blade root for sideways and head-on impact scenarios,developed due to wind-wave misalignment conditions,are investigated.Finally,based on extreme value analyses of critical responses,safe domain for the mating task under different wind-wave misalignments is compared.The results show that although misaligned wind-wave conditions develop substantial relative motions between root and hub,aligned wind-wave conditions induce largest impact velocities and develop critical failure modes at a relatively low threshold velocity of impact.展开更多
This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors.Data collection and behavioral analysis are achieved using m...This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors.Data collection and behavioral analysis are achieved using machine learning(ML)algorithms through accelerometer sensors.However,behavioral analysis poses challenges due to the complexity of cow activities.The task becomes more challenging in a real-time behavioral analysis system with the requirement for shorter data windows and energy constraints.Shorter windows may lack sufficient information,reducing algorithm performance.Additionally,the sensor’s position on the cowsmay shift during practical use,altering the collected accelerometer data.This study addresses these challenges by employing a 3-s data window to analyze cow behaviors,specifically Feeding,Lying,Standing,and Walking.Data synchronization between accelerometer sensors placed on the neck and leg compensates for the lack of information in short data windows.Features such as the Vector of Dynamic Body Acceleration(VeDBA),Mean,Variance,and Kurtosis are utilized alongside the Decision Tree(DT)algorithm to address energy efficiency and ensure computational effectiveness.This study also evaluates the impact of sensor misalignment on behavior classification.Simulated datasets with varying levels of sensor misalignment were created,and the system’s classification accuracy exceeded 0.95 for the four behaviors across all datasets(including original and simulated misalignment datasets).Sensitivity(Sen)and PPV for all datasets were above 0.9.The study provides farmers and the dairy industry with a practical,energy-efficient system for continuously monitoring cattle behavior to enhance herd productivity while reducing labor costs.展开更多
Large language models(LLMs)represent significant advancements in artificial intelligence.However,their increasing capabilities come with a serious challenge:misalignment,which refers to the deviation of model behavior...Large language models(LLMs)represent significant advancements in artificial intelligence.However,their increasing capabilities come with a serious challenge:misalignment,which refers to the deviation of model behavior from the designers’intentions and human values.This review aims to synthesize the current understanding of the LLM misalignment issue and provide researchers and practitioners with a comprehensive overview.We define the concept of misalignment and elaborate on its various manifestations,including generating harmful content,factual errors(hallucinations),propagating biases,failing to follow instructions,emerging deceptive behaviors,and emergent misalignment.We explore the multifaceted causes of misalignment,systematically analyzing factors from surface-level technical issues(e.g.,training data,objective function design,model scaling)to deeper fundamental challenges(e.g.,difficulties formalizing values,discrepancies between training signals and real intentions).This review covers existing and emerging techniques for detecting and evaluating the degree of misalignment,such as benchmark tests,red-teaming,and formal safety assessments.Subsequently,we examine strategies to mitigate misalignment,focusing on mainstream alignment techniques such as RLHF,Constitutional AI(CAI),instruction fine-tuning,and novel approaches that address scalability and robustness.In particular,we analyze recent advances in misalignment attack research,including system prompt modifications,supervised fine-tuning,self-supervised representation attacks,and model editing,which challenge the robustness of model alignment.We categorize and analyze the surveyed literature,highlighting major findings,persistent limitations,and current contentious points.Finally,we identify key open questions and propose several promising future research directions,including constructing high-quality alignment datasets,exploring novel alignment methods,coordinating diverse values,and delving into the deep philosophical aspects of alignment.This work underscores the complexity and multidimensionality of LLM misalignment issues,calling for interdisciplinary approaches to reliably align LLMs with human values.展开更多
To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the ...To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the received signal and locally reconstructed AN will deteriorate the AN cancellation performance,yielding significant secrecy degradation at the FH receiver.In view of this,first,the AN cancellation performance under time misalignment is evaluated via signal to AN-plus-noise ratio,and the system secrecy is analyzed via secrecy rate.Then,to mitigate the performance degradation raised by time misalignment,the transmitting power allocation scheme for AN and confidential signal(CS)is optimized,and the optimal hopping period is designed.Notably,the obtained conclusions in both the performance evaluation and transmitter optimization sections hold no matter whether the eavesdropper can realize FH synchronization or not.Simulations verify that time misalignment will raise non-negligible performance degradation.Besides,the power ratio of AN to CS should decrease as time misalignment increases,and for perfect time synchronization,the transmitting power of AN and CS should be equivalent.In addition,a longer hopping period is preferred for secrecy enhancement when time misalignment gets exacerbated.展开更多
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these...The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these fluctuations,a passive control strategy centered around a multi-stable nonlinear energy sink(MNES)is proposed.First,models for electromagnetic torque,gear nonlinear meshing torque,and misalignment torque are established.Building upon this foundation,an electromechanical coupling dynamic model of the electric drive system is formulated.Sensitivity analysis is conducted to determine the sensitive nodes of each mode and to provide guidance for the installation of the MNES.The structure of the MNES is introduced,and an electromechanical coupling dynamic model with the MNES is established.Based on this model,the influence of the misaligned angle on the electromechanical coupling characteristics is analyzed.In addition,the vibration suppression performance of the MNES is studied under both speed and uniform speed conditions.Finally,experimental testing is conducted to verify the vibration suppression performance of the MNES.The results indicate that misalignment triggers the emergence of its characteristic frequencies and associated sidebands.Meanwhile,the MNES effectively mitigates the torsional vibrations in the coupled system,demonstrating suppression rates of 52.69%in simulations and 63.3%in experiments.展开更多
Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the tra...Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.展开更多
The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for e...The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.展开更多
The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount o...The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.展开更多
The effects of journal misalignment on a journal bearing caused by an asymmetric rotor structure are presented in this study.A new model considering the asymmetric deflection is applied.Also,the thermo-hydrodynamic of...The effects of journal misalignment on a journal bearing caused by an asymmetric rotor structure are presented in this study.A new model considering the asymmetric deflection is applied.Also,the thermo-hydrodynamic of the oil film in the journal bearing and straightforward elasticity theory are considered in the analysis.Based on the structure stiffness equivalent characteristic,a simple stepped shaft can reflect the entire complex structure model.The existing lubrication model,which does not consider this angle component,is not very precise for journal bearings.Film pressure,misalignment angle,velocity field,oil leakage,and temperature field were calculated and compared in the journal bearing analysis.The results indicate that bearing performances are greatly affected by misalignment caused by the asymmetric structure.A simple stepped shaft can effectively represent a misaligned journal bearing in a rotor-bearing system.展开更多
The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-shea...The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.展开更多
A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectr...A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectrum of Wen et al. (1993, Journal of Oceanography, 49(2), 131~147, 149~172). For frequencies smaller than the peak frequency, the directional function is obtained by comparing and analyzing existing formulas. The nondimensional wind-wave frequency spectrum of Wen et al. (1994, Progress in Natural Seience, 4(4). 407~427;4 (5), 586~596) has been used together with the directional function just mentioned to obtain the directional spectrum for easier application.展开更多
Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave inte...Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.展开更多
The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empi...The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empirical formulas for the growth of significant wave height and period. The main features of spectrum growth as specified by these parameters agree with those of the JONS-WAP experiments. For given wind speed and fetch, the high frequency parts beyond the peaks of shallow water spectra almost coincide with that of the corresponding deep water spectrum, whereas the low frequency parts differ appreciably. The method developed in this paper predicts smaller significant wave height as well as smaller wave period for shallow water spectra in contrast to the theoretical result of Kitaigorodskii ef al, in which the peak frequency, and consequently the significant wave period, remains basically unchanged for different water depths. Spectra are further reduced to a form in which only significant wave height and period are left as parameters, the peakness factor being replaced by the wave steepness through an empirical relation between them. Spectra in this form have been verified by observations.展开更多
The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by f...The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by four wind-wave parameters that are wave age,wave steepness,windsea Reynolds number R B and R H ,and the analyzed data are divided into laboratory,field and combined data sets respectively.Comparison and analysis of dependence of C D on wind-wave parameters show that R B can fit the C D most appropriately.Wave age and wave steepness are not suitable to fit C D with a narrow range data set.When the value of wave age has a board range,R H is not suitable to fit C D either.Three relationships between C D and R B are integrated into the bulk algorithm COARE to calculate the observational friction velocity,and the results show that the relationship between C D and R B which is fitted with field data set can describe the momentum transfer in the open ocean,under low-moderate wind speed condition,most appropriately.展开更多
Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an...Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.展开更多
The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elast...The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elastic deformation, time synchronization error, and so on. Before the satellite is launched, the misalignment model must be established and validated. But there were no observation data, which is a non-negligible risk of yielding the greatest returns on investment. On the basis of misalignment modeling using landmarks and stars, which is not available between different organizations and is developed by ourselves, experimental data are constructed to validate the navigation processing flow as well as misalignment calculation accuracy. In the condition of using landmarks, the maximum misalignment calculation errors of roll, pitch, and yaw axis are 2, 2, and 104 micro radians, respectively, without considering the accuracy of image edge detection. While in the condition of using stars, the maximum errors of roll, pitch, and yaw axis are 1, 1, and 3 micro radians, respectively, without considering the accuracy of star center extraction. Results are rather encouraging, which pave the way for high-accuracy image navigation of three-axis stabilized geostationary satellite. The misalignment modeling as well as calculation method has been used in the new generation of geostationary meteorological satellite in China, FY-4 series, the first satellite of which was launched at the end of 2016.展开更多
Wen et al.'s method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the ze...Wen et al.'s method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m0 and peak frequency ω0, contains in addition to the peakness factor P= ω0S(ω0)/m0, a depth parameter ω= (2πm0)1/2/d (d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.展开更多
The spectrum derived in Part 1 of the presert paper is here systematically verified with field data andcompared at some length with that obtained by multiplying the deep-water spectrum with theKitaigorodskii factor.
A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condi...A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of nonstop machine. It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method, and experi ments are extensively carried out with a laboratory test rig. Both the simulation and experimental re suits basically agree well in that, the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the plitude of one time running speed component bration has been basically eliminated. entire rotor system. Experimental results show the am decreases by 30% , and the two time running speed vibration has been basically eliminated.展开更多
基金The study is a part of SFI MOVE projects funded by the Research Council of Norway,NFR project number 237929.
文摘Most wind turbine blades are assembled piece-by-piece onto the hub of a monopile-type offshore wind turbine using jack-up crane vessels.Despite the stable foundation of the lifting cranes,the mating process exhibits substantial relative responses amidst blade root and hub.These relative motions are combined effects of wave-induced monopile motions and wind-induced blade root motions,which can cause impact loads at the blade root’s guide pin in the course of alignment procedure.Environmental parameters including the wind-wave misalignments play an important role for the safety of the installation tasks and govern the impact scenarios.The present study investigates the effects of wind-wave misalignments on the blade root mating process on a monopile-type offshore wind turbine.The dynamic responses including the impact velocities between root and hub in selected wind-wave misalignment conditions are investigated using multibody simulations.Furthermore,based on a finite element study,different impact-induced failure modes at the blade root for sideways and head-on impact scenarios,developed due to wind-wave misalignment conditions,are investigated.Finally,based on extreme value analyses of critical responses,safe domain for the mating task under different wind-wave misalignments is compared.The results show that although misaligned wind-wave conditions develop substantial relative motions between root and hub,aligned wind-wave conditions induce largest impact velocities and develop critical failure modes at a relatively low threshold velocity of impact.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number:02/2022/TN.
文摘This study focuses on the design and validation of a behavior classification system for cattle using behavioral data collected through accelerometer sensors.Data collection and behavioral analysis are achieved using machine learning(ML)algorithms through accelerometer sensors.However,behavioral analysis poses challenges due to the complexity of cow activities.The task becomes more challenging in a real-time behavioral analysis system with the requirement for shorter data windows and energy constraints.Shorter windows may lack sufficient information,reducing algorithm performance.Additionally,the sensor’s position on the cowsmay shift during practical use,altering the collected accelerometer data.This study addresses these challenges by employing a 3-s data window to analyze cow behaviors,specifically Feeding,Lying,Standing,and Walking.Data synchronization between accelerometer sensors placed on the neck and leg compensates for the lack of information in short data windows.Features such as the Vector of Dynamic Body Acceleration(VeDBA),Mean,Variance,and Kurtosis are utilized alongside the Decision Tree(DT)algorithm to address energy efficiency and ensure computational effectiveness.This study also evaluates the impact of sensor misalignment on behavior classification.Simulated datasets with varying levels of sensor misalignment were created,and the system’s classification accuracy exceeded 0.95 for the four behaviors across all datasets(including original and simulated misalignment datasets).Sensitivity(Sen)and PPV for all datasets were above 0.9.The study provides farmers and the dairy industry with a practical,energy-efficient system for continuously monitoring cattle behavior to enhance herd productivity while reducing labor costs.
基金supported by National Natural Science Foundation of China(62462019,62172350)Guangdong Basic and Applied Basic Research Foundation(2023A1515012846)+6 种基金Guangxi Science and Technology Major Program(AA24263010)The Key Research and Development Program of Guangxi(AB24010085)Key Laboratory of Equipment Data Security and Guarantee Technology,Ministry of Education(GDZB2024060500)2024 Higher Education Scientific Research Planning Project(No.24NL0419)Nantong Science and Technology Project(No.JC2023070)the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(GrantNo.SKLACSS-202407)sponsored by the Cultivation of Young andMiddle-aged Academic Leaders in the“Qing Lan Project”of Jiangsu Province and the 2025 Outstanding Teaching Team in the“Qing Lan Project”of Jiangsu Province.
文摘Large language models(LLMs)represent significant advancements in artificial intelligence.However,their increasing capabilities come with a serious challenge:misalignment,which refers to the deviation of model behavior from the designers’intentions and human values.This review aims to synthesize the current understanding of the LLM misalignment issue and provide researchers and practitioners with a comprehensive overview.We define the concept of misalignment and elaborate on its various manifestations,including generating harmful content,factual errors(hallucinations),propagating biases,failing to follow instructions,emerging deceptive behaviors,and emergent misalignment.We explore the multifaceted causes of misalignment,systematically analyzing factors from surface-level technical issues(e.g.,training data,objective function design,model scaling)to deeper fundamental challenges(e.g.,difficulties formalizing values,discrepancies between training signals and real intentions).This review covers existing and emerging techniques for detecting and evaluating the degree of misalignment,such as benchmark tests,red-teaming,and formal safety assessments.Subsequently,we examine strategies to mitigate misalignment,focusing on mainstream alignment techniques such as RLHF,Constitutional AI(CAI),instruction fine-tuning,and novel approaches that address scalability and robustness.In particular,we analyze recent advances in misalignment attack research,including system prompt modifications,supervised fine-tuning,self-supervised representation attacks,and model editing,which challenge the robustness of model alignment.We categorize and analyze the surveyed literature,highlighting major findings,persistent limitations,and current contentious points.Finally,we identify key open questions and propose several promising future research directions,including constructing high-quality alignment datasets,exploring novel alignment methods,coordinating diverse values,and delving into the deep philosophical aspects of alignment.This work underscores the complexity and multidimensionality of LLM misalignment issues,calling for interdisciplinary approaches to reliably align LLMs with human values.
基金supported in part by the National Natural Science Foundation of China under Grant 62071094in part by the National Key Laboratory of Wireless Communications Foundation under Grant IFN202402in part by the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation under Grant GZC20240217.
文摘To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the received signal and locally reconstructed AN will deteriorate the AN cancellation performance,yielding significant secrecy degradation at the FH receiver.In view of this,first,the AN cancellation performance under time misalignment is evaluated via signal to AN-plus-noise ratio,and the system secrecy is analyzed via secrecy rate.Then,to mitigate the performance degradation raised by time misalignment,the transmitting power allocation scheme for AN and confidential signal(CS)is optimized,and the optimal hopping period is designed.Notably,the obtained conclusions in both the performance evaluation and transmitter optimization sections hold no matter whether the eavesdropper can realize FH synchronization or not.Simulations verify that time misalignment will raise non-negligible performance degradation.Besides,the power ratio of AN to CS should decrease as time misalignment increases,and for perfect time synchronization,the transmitting power of AN and CS should be equivalent.In addition,a longer hopping period is preferred for secrecy enhancement when time misalignment gets exacerbated.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
基金Project supported by the National Natural Science Foundation of China(Nos.52075084 and 52475094)the Fundamental Research Funds for the Central Universities of China(No.N2303005)。
文摘The torque ripples resulting from external electromagnetic excitation and mechanical internal excitation contribute to significant torsional vibration issues within electromechanical coupling systems.To mitigate these fluctuations,a passive control strategy centered around a multi-stable nonlinear energy sink(MNES)is proposed.First,models for electromagnetic torque,gear nonlinear meshing torque,and misalignment torque are established.Building upon this foundation,an electromechanical coupling dynamic model of the electric drive system is formulated.Sensitivity analysis is conducted to determine the sensitive nodes of each mode and to provide guidance for the installation of the MNES.The structure of the MNES is introduced,and an electromechanical coupling dynamic model with the MNES is established.Based on this model,the influence of the misaligned angle on the electromechanical coupling characteristics is analyzed.In addition,the vibration suppression performance of the MNES is studied under both speed and uniform speed conditions.Finally,experimental testing is conducted to verify the vibration suppression performance of the MNES.The results indicate that misalignment triggers the emergence of its characteristic frequencies and associated sidebands.Meanwhile,the MNES effectively mitigates the torsional vibrations in the coupled system,demonstrating suppression rates of 52.69%in simulations and 63.3%in experiments.
基金supported in part by The National Natural Science Foundation of China(62071255,62171232,61771257)The Major Projects of the Natural Science Foundation of the Jiangsu Higher Education Institutions(20KJA510009)+3 种基金The Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications),Ministry of Education(JZNY201914)The open research fund of National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications(KFJJ20170305)The Research Fund of Nanjing University of Posts and Telecommunications(NY218012)Henan province science and technology research projects High and new technology(No.182102210106).
文摘Millimeter-wave transmission combined with Orbital Angular Momentum(OAM)has the advantage of reducing the loss of beam power and increasing the system capacity.However,to fulfill this advantage,the antennas at the transmitter and receiver must be parallel and coaxial;otherwise,the accuracy of mode detection at the receiver can be seriously influenced.In this paper,we design an OAM millimeter-wave communication system for overcoming the above limitation.Specifically,the first contribution is that the power distribution between different OAM modes and the capacity of the system with different mode sets are analytically derived for performance analysis.The second contribution lies in that a novel mode selection scheme is proposed to reduce the total interference between different modes.Numerical results show that system performance is less affected by the offset when the mode set with smaller modes or larger intervals is selected.
基金supported by National Natural Science Foundation of China(Grant Nos. 50775190No.51275425)+2 种基金Spring Sunshine Plan of Ministry of Education of China(Grant No. 10202258)Talent Introduction of Xihua UniversityChina(Grant No. Z1220217)
文摘The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. ZJG0704)
文摘The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.
基金Project supported by the National Natural Science Foundation of China (No. 60879002)the Tianjin Support Plan of China(No. 10ZCKFGX03800)
文摘The effects of journal misalignment on a journal bearing caused by an asymmetric rotor structure are presented in this study.A new model considering the asymmetric deflection is applied.Also,the thermo-hydrodynamic of the oil film in the journal bearing and straightforward elasticity theory are considered in the analysis.Based on the structure stiffness equivalent characteristic,a simple stepped shaft can reflect the entire complex structure model.The existing lubrication model,which does not consider this angle component,is not very precise for journal bearings.Film pressure,misalignment angle,velocity field,oil leakage,and temperature field were calculated and compared in the journal bearing analysis.The results indicate that bearing performances are greatly affected by misalignment caused by the asymmetric structure.A simple stepped shaft can effectively represent a misaligned journal bearing in a rotor-bearing system.
基金Project(2006AA04Z228) supported by National Hi-tech Research and Development Program of China
文摘The essential requirements of the end-effector of large space manipulator are capabilities of misalignment tolerance and soft capture.According to these requirements,an end-effector prototype combining the tendon-sheath transmission system with steel cable snaring mechanism was manufactured.An analysis method based on the coordinate transformation and the projection of key points of the mechanical interface was proposed,and it was a guideline of the end-effector design.Furthermore,the tendon-sheath transmission system was employed in the capture subassembly to reduce the inertia of the capture mechanism and enlarge the capture space.The capabilities of misalignment tolerance and soft capture were validated through the dynamic simulation in ADAMS software.The results of the capture simulation and experiment show that the end-effector has outstanding capabilities of misalignment tolerance and soft capture.The translation misalignments in radial directions are±100 mm,and angular misalignments about pitch and yaw are±15°.
文摘A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectrum of Wen et al. (1993, Journal of Oceanography, 49(2), 131~147, 149~172). For frequencies smaller than the peak frequency, the directional function is obtained by comparing and analyzing existing formulas. The nondimensional wind-wave frequency spectrum of Wen et al. (1994, Progress in Natural Seience, 4(4). 407~427;4 (5), 586~596) has been used together with the directional function just mentioned to obtain the directional spectrum for easier application.
基金The National Natural Science Foundation of China under contract No. 40706008the Open Research Program of the Key Laboratory of Chinese Acadeing of Sciences for Tropical Marine Environmental Dynamics under contract No. LED0606+1 种基金the Shandong Province Natural Science Foundation of China under contract No. Z2008E02the National High Technology Research and Development Program ("863" Program) of China under contract No. 2008AA09A402
文摘Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.
文摘The spectrum variance m0, peak frequency ω0 and peakness factor p are expressed in terms of nondimensional fetch and duration by making use of relations which are derived through comparing and analyzing existing empirical formulas for the growth of significant wave height and period. The main features of spectrum growth as specified by these parameters agree with those of the JONS-WAP experiments. For given wind speed and fetch, the high frequency parts beyond the peaks of shallow water spectra almost coincide with that of the corresponding deep water spectrum, whereas the low frequency parts differ appreciably. The method developed in this paper predicts smaller significant wave height as well as smaller wave period for shallow water spectra in contrast to the theoretical result of Kitaigorodskii ef al, in which the peak frequency, and consequently the significant wave period, remains basically unchanged for different water depths. Spectra are further reduced to a form in which only significant wave height and period are left as parameters, the peakness factor being replaced by the wave steepness through an empirical relation between them. Spectra in this form have been verified by observations.
基金The National Natural Science Foundation of China under Grant Nos 40675056 41076074National Key Basic Research Development Program under Grant No.2007CB411805the Basic Theory Foundation of Institute of Meteorology, PLA University of Science and Technology
文摘The relationships between sea surface roughness z 0 and wind-wave parameters are analyzed,and spurious self-correlations are found in all of the parameterization schemes.Sea surface drag coefficient C D is fitted by four wind-wave parameters that are wave age,wave steepness,windsea Reynolds number R B and R H ,and the analyzed data are divided into laboratory,field and combined data sets respectively.Comparison and analysis of dependence of C D on wind-wave parameters show that R B can fit the C D most appropriately.Wave age and wave steepness are not suitable to fit C D with a narrow range data set.When the value of wave age has a board range,R H is not suitable to fit C D either.Three relationships between C D and R B are integrated into the bulk algorithm COARE to calculate the observational friction velocity,and the results show that the relationship between C D and R B which is fitted with field data set can describe the momentum transfer in the open ocean,under low-moderate wind speed condition,most appropriately.
基金Supported by the National Basic Research Program of China(No.2012CB026000)2015 Beijing Scientific Research and Graduate Training Project(No.0318-21510028008)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)
文摘Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.
文摘The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elastic deformation, time synchronization error, and so on. Before the satellite is launched, the misalignment model must be established and validated. But there were no observation data, which is a non-negligible risk of yielding the greatest returns on investment. On the basis of misalignment modeling using landmarks and stars, which is not available between different organizations and is developed by ourselves, experimental data are constructed to validate the navigation processing flow as well as misalignment calculation accuracy. In the condition of using landmarks, the maximum misalignment calculation errors of roll, pitch, and yaw axis are 2, 2, and 104 micro radians, respectively, without considering the accuracy of image edge detection. While in the condition of using stars, the maximum errors of roll, pitch, and yaw axis are 1, 1, and 3 micro radians, respectively, without considering the accuracy of star center extraction. Results are rather encouraging, which pave the way for high-accuracy image navigation of three-axis stabilized geostationary satellite. The misalignment modeling as well as calculation method has been used in the new generation of geostationary meteorological satellite in China, FY-4 series, the first satellite of which was launched at the end of 2016.
基金Project supported by the National Natural Science Foundation of China.
文摘Wen et al.'s method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m0 and peak frequency ω0, contains in addition to the peakness factor P= ω0S(ω0)/m0, a depth parameter ω= (2πm0)1/2/d (d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.
基金Project supported by the National Natural Science Foundation of China.
文摘The spectrum derived in Part 1 of the presert paper is here systematically verified with field data andcompared at some length with that obtained by multiplying the deep-water spectrum with theKitaigorodskii factor.
基金Supported by the National Basic Research Program of China(No.2012CB026000)the Joint Project Special Fund of Education Committee of Beijingthe Ph.D.Programs Foundation of Ministry of Education of China(No.20110010110009)
文摘A new type of shear viscous damper for rotating machinery is designed. The new damper with good stability and reliability can inhibit all kinds of frequency multiplication vibration caused by misalignment in the condition of nonstop machine. It analyzes and discusses the use of the shear viscous damper for misalignment vibration response inhibition with a finite element method, and experi ments are extensively carried out with a laboratory test rig. Both the simulation and experimental re suits basically agree well in that, the damper can effectively control the misalignment vibration of the rotor system and improves the stability of the plitude of one time running speed component bration has been basically eliminated. entire rotor system. Experimental results show the am decreases by 30% , and the two time running speed vibration has been basically eliminated.