The high-entropy alloy composite coatings AlCu_(2)Ti(NiCr)_(2)-(WC)_(x)(x denotes powder feeding speeds,including 0,25,50,and 75 r/min)were prepared by plasma cladding using a hybrid mode of AlCu_(2)(NiCr)_(2)Ti cable...The high-entropy alloy composite coatings AlCu_(2)Ti(NiCr)_(2)-(WC)_(x)(x denotes powder feeding speeds,including 0,25,50,and 75 r/min)were prepared by plasma cladding using a hybrid mode of AlCu_(2)(NiCr)_(2)Ti cable-type welding wire(CWW)and tungsten carbide(WC)powder.The effect of WC powder feeding speed on the microstructure,hardness,and wear properties of the prepared coatings was investigated.The results show that the coatings consist of body-centered cubic main phases and face-centered cubic secondary phases,with carbide reinforcement phases formed due to the addition of WC.The hardness and wear resistance of the coatings are significantly improved compared to the TC11 substrate.When WC powder feeding speed is set at 50 r/min,the coating exhibits optimal wear resistance,with a minimum volume wear rate of 8.5869×10^(-6)mm^(3)·N^(-1)·m^(-1),greatly improving the wear properties of TC11 surface.The coincident CWW-powder plasma cladding provides a viable method for the preparation of highentropy alloy composite coatings with enhanced wear resistance.展开更多
Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and...Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance.展开更多
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a...Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.展开更多
The failure of mechanical components is mainly caused by three key mechanisms:wear,corrosion,and fatigue.Among these failure modes,wear of mechanical components notably increases energy consumption and leads to substa...The failure of mechanical components is mainly caused by three key mechanisms:wear,corrosion,and fatigue.Among these failure modes,wear of mechanical components notably increases energy consumption and leads to substantial economic losses.Fe-Cr-C-B-Ti-Y wear-resistant cladding metals were prepared by the plasma cladding method.The wear performance of the cladding metals was analyzed using an MLS-23 rubber wheel wet sand wear tester.X-ray diffraction,scanning electron microscope,electron backscatter diffraction,and transmission electron microscope were employed to investigate the phase composition and microstructure of the cladding metals,followed by a discussion of their strengthening and wear mechanisms.The results indicate that the microstructure of Fe-Cr-C-B-Ti-Y cladding metals is composed of austeniteγ-Fe,M_(23)(C,B)_(6)eutectic carbide,and TiC hard phase.As the Y_(2)O_(3)content increases,the hardness and wear resistance of the cladding metal show a trend of first increasing and then decreasing.When the Y_(2)O_(3)content is 0.4wt%,the precipitation of TiC hard phase and M_(23)(C,B)_(6)-type eutectic carbides reaches maximum,and the grain size is the finest.The cladding metal exhibits optimal formability,featuring the smallest wetting angle of 52.2°.Under this condition,the Rockwell hardness value of the cladding metal is 89.7 HRC,and the wear mass loss is 0.27 g.The dominant wear mechanism of cladding metals is abrasive wear,and the material removal process involves micro-cutting and plowing.展开更多
In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding techno...In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding technology.The effects of WC morphology on the phase composition,microstructure,microhardness,and wear resistance of the cladding layer were compared and analyzed.The res-ults show that the surface of the cladding layer was well formed.M_(23)C_(6),M_(7)C_(3),WC,and W_(2)C exist in both cladding layers.With the ad-dition of spherical WC,the diffraction peaks of γ-Co appear on the left side of the main peak of Co6W6C.The area of intergranular carbides accounts for a large proportion in the surface layer which with the fine grains.During the process of laser cladding the spherical WC particles with loose structure are prone to melting,including their interior.However,the melting amount of irregular WC particles is finite,which only occurs on the periphery of the particles,and the particle interior is relatively intact.The microhard-ness of two cladding layers gradient increases from the substrate to the surface layer.The surface layer added spherical WC has high-er microhardness,which reaches 790.6 HV1.Nevertheless,the wear resistance of the cladding layer added irregular WC is better than that of the cladding layer added spherical WC.The reason is because that the incompletely melted irregular WC particles are uni-formly distributed in the cladding layer which provided the support points for the cladding layer matrix during the wear process,the wear of the cladding layer by the grinding pair is reduced consequently.展开更多
Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been ...Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been explored to improve the surface performance and prolong service life of these parts.Among these technologies,laser cladding has shown promise in producing Fe-based alloy coatings with superior interfacial bonding properties to the Fe-C alloy substrate.Additionally,the microstructure of the Fe-based alloy coating is more uniform and the grain size is finer than that of surfacing welding,thermal spraying,and plasma cladding,and the oxide film of alloying elements on the coating surface can improve the coating performance.However,Fe-based alloy coatings produced by laser cladding typically exhibit lower hardness,lower wear resistance,corrosion resistance,and oxidation resistance compared to coatings based on Co and Ni alloys.Moreover,these coatings are susceptible to defects such as pores and cracks.To address these limitations,the incorporation of rare-earth oxides through doping in the laser cladding process has garnered significant attention.This approach has demonstrated substantial improvements in the microstructure and properties of Fe-based alloy coatings.This paper reviewed recent research on the structure and properties of laser-cladded Fe-based alloy coatings doped with various rare earth oxides,including La_(2)O_(3),CeO_(2),and Y_(2)O_(3).Specifically,it discussed the effects of rare earth oxides and their concentrations on the structure,hardness,friction,wear,corrosion,and oxidation characteristics of these coatings.Furthermore,the mechanisms by which rare earth oxides influence the coating’s structure and properties were summarized.This review aimed to serve as a valuable reference for the application and advancement of laser cladding technology for rare earth modified Fe-based alloy coatings.展开更多
The effects of the inter-annealing process on the microstructure,plane stress fracture toughness,and tensile properties of an AA7075 cladding sheet were investigated using optical microscopy,scanning electron microsco...The effects of the inter-annealing process on the microstructure,plane stress fracture toughness,and tensile properties of an AA7075 cladding sheet were investigated using optical microscopy,scanning electron microscopy,electron backscattered diffraction,transmission electron microscopy,and mechanical property tests.The results indicate that the plane stress fracture toughness of AA7075-T6 cladding sheet can be greatly improved.The plane stress fracture toughness for the longitudinal-transverse(L-T)and transverse-longitudinal(T-L)directions were 117.7 and 94.8 MPa·m^(1/2),respectively,after intermediate annealing at 380°C.This represents an increase of 23.9 MPa·m^(1/2)in the L-T direction and 22.6 MPa·m^(1/2) in the T-L direction compared with the AA7075-T6 cladding sheet without intermediate annealing.Moreover,the tensile strength remains similar under different conditions.Microstructure analysis indicates that intermediate annealing before heat treatment can result in long sub-grains,few recrystallized grain boundaries,and small size precipitates in AA7075-T6 cladding sheets.展开更多
To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synt...To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.展开更多
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti...Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.展开更多
The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically inves...The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.展开更多
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer...A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.展开更多
AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at th...AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.展开更多
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer...Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.展开更多
The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were i...The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.展开更多
In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder wa...In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.展开更多
Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the ...Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.展开更多
Laser cladding is a promising photon-based surface engineering technique broadly utilized for fabricating harder and wear resistant composite coatings. In spite of excellent properties, the practical applications of l...Laser cladding is a promising photon-based surface engineering technique broadly utilized for fabricating harder and wear resistant composite coatings. In spite of excellent properties, the practical applications of laser claddings are relatively restricted when compared with well-established coating techniques because of their inherent defects identified as cracks, pores and inclusions. Substantial evidence suggests that the incorporation of an appropriate amount of rare earth in laser claddings can remarkably prevent these defects. Additionally, the presence of rare earth in laser claddings can notably enhance tribo-mechanical properties such as surface hardness, modulus of elasticity, fracture toughness, friction coefficient and wear rate. In this literature review, the effect of rare earth in reducing dilution and cracks susceptibility of laser claddings in addition to microstructural refinement attained was examined. Mechanical and tribological properties of these claddings along with their underlying mechanism were discussed in detail. Finally, this article summarizes current applications of laser claddings based on rare earth and was concluded with future research directions.展开更多
High-entropy alloy layer up to 150 lm in thickness was formed on H13 substrate with a metallurgical bonding at the coating/substrate interface. Simple solid solution phases were formed in the coating layer with a typi...High-entropy alloy layer up to 150 lm in thickness was formed on H13 substrate with a metallurgical bonding at the coating/substrate interface. Simple solid solution phases were formed in the coating layer with a typical microstructure composed of both dendrite and interdendrite. The microstructure at the top of the cladding zone consists of equiaxed grains while that at the bottom consists of columnar grains. The coating layer exhibits great enhancement in microhardness and wear resistance compared with the H13 substrate.展开更多
In order to study the effect of scanning speed on the electrochemical corrosion resistance of laser cladding TC4 alloy in artificial seawater, the x-ray diffraction analysis, microstructure of cross-section, microhard...In order to study the effect of scanning speed on the electrochemical corrosion resistance of laser cladding TC4 alloy in artificial seawater, the x-ray diffraction analysis, microstructure of cross-section, microhardness variation, and impedance spectrum have been studied in comparison with the TC4 titanium alloy. The results show that the main phase of cladding coating is α-Ti, and the change of scanning speed has no obvious effect on it; therefore, the supersaturated α-Ti solid solution is formed, and the acicular α martensite is obtained. As the scanning speed increases, the microstructure of cladding coating is orthogonal basket-weave, the crystal surface spacing decreases, and the average microhardness of laser cladding TC4 alloy slightly increases. When the scanning speed increases to 10 mm/s, the microhardness is about 14.71%higher than that of the substrate, and the electrochemical corrosion resistance of laser cladding TC4 alloy is also improved,which is about 2.48 times more than the substrate. Grain refinement has a great effect on enhancing the anti-electrochemical corrosion.展开更多
H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss...H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss heat source. The simulative results in the heat affected zone are compared with the experimental ones, and the average er rors of width and depth are 15% and 4.5%, respectively. It is found that the simulative results provide basic data for investigating of laser cladding further.展开更多
基金National Natural Science Foundation of China(51764038)Gansu Science and Technology Planning Project(2022JR5RA314,22YF7WA151,22YF7GA138,23CXGA0151)+1 种基金Gansu Provincial Department of Education:Industrial Support Plan Project(2022CYZC-31)Gansu Provincial Association of Science and Technology Innovation Driving Force Project(GXH20230817-10)。
文摘The high-entropy alloy composite coatings AlCu_(2)Ti(NiCr)_(2)-(WC)_(x)(x denotes powder feeding speeds,including 0,25,50,and 75 r/min)were prepared by plasma cladding using a hybrid mode of AlCu_(2)(NiCr)_(2)Ti cable-type welding wire(CWW)and tungsten carbide(WC)powder.The effect of WC powder feeding speed on the microstructure,hardness,and wear properties of the prepared coatings was investigated.The results show that the coatings consist of body-centered cubic main phases and face-centered cubic secondary phases,with carbide reinforcement phases formed due to the addition of WC.The hardness and wear resistance of the coatings are significantly improved compared to the TC11 substrate.When WC powder feeding speed is set at 50 r/min,the coating exhibits optimal wear resistance,with a minimum volume wear rate of 8.5869×10^(-6)mm^(3)·N^(-1)·m^(-1),greatly improving the wear properties of TC11 surface.The coincident CWW-powder plasma cladding provides a viable method for the preparation of highentropy alloy composite coatings with enhanced wear resistance.
文摘Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance.
基金National Natural Science Foundation of China(52071126)Natural Science Foundation of Tianjin City,China(22JCQNJC01240)+2 种基金Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z1009G)Special Funds for Science and Technology Innovation in Hebei(2022X19)Anhui Provincial Natural Science Foundation(2308085ME135)。
文摘Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.
文摘The failure of mechanical components is mainly caused by three key mechanisms:wear,corrosion,and fatigue.Among these failure modes,wear of mechanical components notably increases energy consumption and leads to substantial economic losses.Fe-Cr-C-B-Ti-Y wear-resistant cladding metals were prepared by the plasma cladding method.The wear performance of the cladding metals was analyzed using an MLS-23 rubber wheel wet sand wear tester.X-ray diffraction,scanning electron microscope,electron backscatter diffraction,and transmission electron microscope were employed to investigate the phase composition and microstructure of the cladding metals,followed by a discussion of their strengthening and wear mechanisms.The results indicate that the microstructure of Fe-Cr-C-B-Ti-Y cladding metals is composed of austeniteγ-Fe,M_(23)(C,B)_(6)eutectic carbide,and TiC hard phase.As the Y_(2)O_(3)content increases,the hardness and wear resistance of the cladding metal show a trend of first increasing and then decreasing.When the Y_(2)O_(3)content is 0.4wt%,the precipitation of TiC hard phase and M_(23)(C,B)_(6)-type eutectic carbides reaches maximum,and the grain size is the finest.The cladding metal exhibits optimal formability,featuring the smallest wetting angle of 52.2°.Under this condition,the Rockwell hardness value of the cladding metal is 89.7 HRC,and the wear mass loss is 0.27 g.The dominant wear mechanism of cladding metals is abrasive wear,and the material removal process involves micro-cutting and plowing.
基金supported by the National Natural Science Foundation of China(52161007)Science and Technology Planning Project of Guangdong Province of China(20170902,20180902)+1 种基金Science and Technology Planning Project of Yangjiang City of Guangdong Province(SDZX2020009)Research project of Shenzhen city(JSGG20210420091802007).
文摘In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding technology.The effects of WC morphology on the phase composition,microstructure,microhardness,and wear resistance of the cladding layer were compared and analyzed.The res-ults show that the surface of the cladding layer was well formed.M_(23)C_(6),M_(7)C_(3),WC,and W_(2)C exist in both cladding layers.With the ad-dition of spherical WC,the diffraction peaks of γ-Co appear on the left side of the main peak of Co6W6C.The area of intergranular carbides accounts for a large proportion in the surface layer which with the fine grains.During the process of laser cladding the spherical WC particles with loose structure are prone to melting,including their interior.However,the melting amount of irregular WC particles is finite,which only occurs on the periphery of the particles,and the particle interior is relatively intact.The microhard-ness of two cladding layers gradient increases from the substrate to the surface layer.The surface layer added spherical WC has high-er microhardness,which reaches 790.6 HV1.Nevertheless,the wear resistance of the cladding layer added irregular WC is better than that of the cladding layer added spherical WC.The reason is because that the incompletely melted irregular WC particles are uni-formly distributed in the cladding layer which provided the support points for the cladding layer matrix during the wear process,the wear of the cladding layer by the grinding pair is reduced consequently.
基金supported by the Jiangxi Provincial Natural Science Foundation of China(Grant number 20224BAB204049)the National Natural Science Foundation of China(Grant number 52205194)the Fund Project of Jiangxi Provincial Department of Education(Grant number GJJ2200602)。
文摘Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been explored to improve the surface performance and prolong service life of these parts.Among these technologies,laser cladding has shown promise in producing Fe-based alloy coatings with superior interfacial bonding properties to the Fe-C alloy substrate.Additionally,the microstructure of the Fe-based alloy coating is more uniform and the grain size is finer than that of surfacing welding,thermal spraying,and plasma cladding,and the oxide film of alloying elements on the coating surface can improve the coating performance.However,Fe-based alloy coatings produced by laser cladding typically exhibit lower hardness,lower wear resistance,corrosion resistance,and oxidation resistance compared to coatings based on Co and Ni alloys.Moreover,these coatings are susceptible to defects such as pores and cracks.To address these limitations,the incorporation of rare-earth oxides through doping in the laser cladding process has garnered significant attention.This approach has demonstrated substantial improvements in the microstructure and properties of Fe-based alloy coatings.This paper reviewed recent research on the structure and properties of laser-cladded Fe-based alloy coatings doped with various rare earth oxides,including La_(2)O_(3),CeO_(2),and Y_(2)O_(3).Specifically,it discussed the effects of rare earth oxides and their concentrations on the structure,hardness,friction,wear,corrosion,and oxidation characteristics of these coatings.Furthermore,the mechanisms by which rare earth oxides influence the coating’s structure and properties were summarized.This review aimed to serve as a valuable reference for the application and advancement of laser cladding technology for rare earth modified Fe-based alloy coatings.
基金the National Key R&D Program of China(Nos.2023YFB3710401,2022YFB3504401)the National Natural Science Foundation of China(Nos.52271094,U1708251)+1 种基金the Key Research and Development Program of Liaoning,China(No.2020JH2/10700003)Qingyuan City Science and Technology Plan Project(No.2023YFJH003),China.
文摘The effects of the inter-annealing process on the microstructure,plane stress fracture toughness,and tensile properties of an AA7075 cladding sheet were investigated using optical microscopy,scanning electron microscopy,electron backscattered diffraction,transmission electron microscopy,and mechanical property tests.The results indicate that the plane stress fracture toughness of AA7075-T6 cladding sheet can be greatly improved.The plane stress fracture toughness for the longitudinal-transverse(L-T)and transverse-longitudinal(T-L)directions were 117.7 and 94.8 MPa·m^(1/2),respectively,after intermediate annealing at 380°C.This represents an increase of 23.9 MPa·m^(1/2)in the L-T direction and 22.6 MPa·m^(1/2) in the T-L direction compared with the AA7075-T6 cladding sheet without intermediate annealing.Moreover,the tensile strength remains similar under different conditions.Microstructure analysis indicates that intermediate annealing before heat treatment can result in long sub-grains,few recrystallized grain boundaries,and small size precipitates in AA7075-T6 cladding sheets.
基金financial supports from the National Natural Science Foundation of China-Youth Project(51801076)the Provincial Colleges and Universities Natural Science Research Project of Jiangsu Province(18KJB430009)+1 种基金the Postdoctoral Research Support Project of Jiangsu Province(1601055C)the Senior Talents Research Startup of Jiangsu University(14JDG126)。
文摘To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.
基金Project (51045004) supported by the National Natural Science Foundation of ChinaProject (2006AA03A219) supported by Hi-tech Research and Development Program of ChinaProject (YYYJ-0913) supported by Knowledge Innovation Project in Chinese Academy of Sciences
文摘Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear.
基金Project(2012AA040210)supported by the National High-Tech Research and Development Program of ChinaProject(510-C10293)supported by the Central Finance Special Fund to Support the Local University,ChinaProject(2010A090200048)supported by the Key Project of Industry,Education,Research of Guangdong Province and Ministry of Education,China
文摘The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear.
基金Projects (51101096, 51002093) supported by the National Natural Science Foundation of ChinaProject (1052nm05000) supported by Special Foundation of the Shanghai Science and Technology Commission for Nano-Materials ResearchProject (J51042) supported by Leading Academic Discipline Project of the Shanghai Education Commission, China
文摘A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.
基金Project(2012CB723307)supported by the National Basic Research Program of ChinaProject(51204046)supported by the National Natural Science Foundation of ChinaProject(20130042130001)supported by the Doctoral Fund of Ministry of Education of China
文摘AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.
基金Project (59975046) supported by the National Natural Science Foundation of China
文摘Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.
文摘The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface.
基金Key Research and Development Project of Shanxi Province(No.201603D121002-2)
文摘In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.
基金Project(51341004)supported by the National Natural Science Foundation of ChinaProject(S050ITP7005)supported by the Shanghai Jiao Tong University Undergraduate Innovative Practice Program,China
文摘Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy.
基金Project supported by the University of Malaya Research Grant(UMRG,RP013A-13AET)University of Malaya Research Grant(UMRG,RP035A-15AET)
文摘Laser cladding is a promising photon-based surface engineering technique broadly utilized for fabricating harder and wear resistant composite coatings. In spite of excellent properties, the practical applications of laser claddings are relatively restricted when compared with well-established coating techniques because of their inherent defects identified as cracks, pores and inclusions. Substantial evidence suggests that the incorporation of an appropriate amount of rare earth in laser claddings can remarkably prevent these defects. Additionally, the presence of rare earth in laser claddings can notably enhance tribo-mechanical properties such as surface hardness, modulus of elasticity, fracture toughness, friction coefficient and wear rate. In this literature review, the effect of rare earth in reducing dilution and cracks susceptibility of laser claddings in addition to microstructural refinement attained was examined. Mechanical and tribological properties of these claddings along with their underlying mechanism were discussed in detail. Finally, this article summarizes current applications of laser claddings based on rare earth and was concluded with future research directions.
基金financially supported by the National Natural Science Foundation of China (No. 50401006)the Fundamental Research Funds for the Central Universities (No. N120409003)the University Students’ Innovation Plan of China (No. 130066)
文摘High-entropy alloy layer up to 150 lm in thickness was formed on H13 substrate with a metallurgical bonding at the coating/substrate interface. Simple solid solution phases were formed in the coating layer with a typical microstructure composed of both dendrite and interdendrite. The microstructure at the top of the cladding zone consists of equiaxed grains while that at the bottom consists of columnar grains. The coating layer exhibits great enhancement in microhardness and wear resistance compared with the H13 substrate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475117 and 51471084)the National Key Research and Development Program of China(Grant No.2017YFB1103604)the Tianjin Municipal Special Program of Talents Development for Excellent Youth Scholars,China(Grant No.TJTZJHQNBJRC-2-15)
文摘In order to study the effect of scanning speed on the electrochemical corrosion resistance of laser cladding TC4 alloy in artificial seawater, the x-ray diffraction analysis, microstructure of cross-section, microhardness variation, and impedance spectrum have been studied in comparison with the TC4 titanium alloy. The results show that the main phase of cladding coating is α-Ti, and the change of scanning speed has no obvious effect on it; therefore, the supersaturated α-Ti solid solution is formed, and the acicular α martensite is obtained. As the scanning speed increases, the microstructure of cladding coating is orthogonal basket-weave, the crystal surface spacing decreases, and the average microhardness of laser cladding TC4 alloy slightly increases. When the scanning speed increases to 10 mm/s, the microhardness is about 14.71%higher than that of the substrate, and the electrochemical corrosion resistance of laser cladding TC4 alloy is also improved,which is about 2.48 times more than the substrate. Grain refinement has a great effect on enhancing the anti-electrochemical corrosion.
基金Item Sponsored by Fund of Office of Science and Technology of Zhejiang Province of China(2008C31041)
文摘H13 powder is cladded on steel P20 (base) by continuous COe laser, and the influence of technological pa rameters such as the laser power is analyzed. The 3-D model of synchronous powder feeding is built under Gauss heat source. The simulative results in the heat affected zone are compared with the experimental ones, and the average er rors of width and depth are 15% and 4.5%, respectively. It is found that the simulative results provide basic data for investigating of laser cladding further.