Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings signific...Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.展开更多
Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind ef...Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind effects on a long-span steel roof structure during the passage of Typhoon Fanapi. Some fi eld data, including wind speed and direction, acceleration responses, etc., were continuously and simultaneously recorded during the passage of the typhoon. Comprehensive analysis of the measured data is conducted to evaluate the typhoon-generated wind characteristics and its effects on a long-span steel roof. The fi rst four natural frequencies and their vibration mode shapes of the Guangzhou International Sports Arena(GISA) roof are evaluated by the stochastic subspace identifi cation(SSI) method and comparisons with those from fi nite element(FE) analysis are made. Meanwhile, damping ratios of the roof are also identifi ed by the SSI method and compared with those identifi ed by the random decrement method; the amplitude-dependent damping behaviors are also discussed. The fullscale measurement results are further compared with the corresponding wind tunnel test results to evaluate its reliability. The results obtained from this study are valuable for academic and professional engineers involved in the design of large-span roof structures.展开更多
Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been ...Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been the field of silviculture, but increasing recognition of the importance and complexity of the subject has recently got people involved from many other disciplines. Due to the global climate changes, it is believed that the risk of further and stronger storms is increasing. In order to better understand the effects of wind on individual trees, forest stand and forest ecosystem, and further to practice the management of forests, it is necessary to summarize the research results related to this subject. This review was mostly based on the references from recent researches in the field, especially from the symposium volumes of some international conferences on this subject. The results indicated that there have been significant progresses in the following aspects: 1) the aerodynamic interaction between wind and trees, 2) the mechanics of trees under wind loading and adaptive growth, 3) the tree's physiological responses to wind, and 4) the risk assessment of wind damage to forest. However, there are some aspects which may need further studies: 1) wind damage to natural forests, 2) wind-driven gap formation and forest dynamics, 3) the effects of changes resulted from wind disturbances on ecological processes of forest ecosystem, and 4) management for the wind-damaged forests. Key words Wind - Wind effect - Trees/forest - Forest ecology - Disturbance CLC number S718 Document code B Foundation item: This research was supported by “the 100-Young-Researcher Project” of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).Biography: ZHU Jiao-jun (1965-), male, Ph. Doctor, Professor of Institute of Applied Ecology, Chinese Academy of Sciences, Professor of Graduate School of Chinese Academy of Sciences. China. Scholar researcher of Faculty of Agriculture, Niigata University, JapanResponsible editor: Song Funan展开更多
Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings ...Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.展开更多
With the presence of wind waves, the swaying of survey vessel may effect the quality of sub-bottom profiler records and, therefore, it is necessary to correct the distortions induced by wave action. A major issue is t...With the presence of wind waves, the swaying of survey vessel may effect the quality of sub-bottom profiler records and, therefore, it is necessary to correct the distortions induced by wave action. A major issue is to distinguish wind wave effect and real bedforms such as sand waves. In this paper, a bandstop filter is designed according to the frequency features of wind wave effect to treat the distortion of seabed topography by wind waves. The technique is used to correct the sub-bottom profile in order to eliminate the wave-induced distortions for the sub-bottom profile records from the Yangtze Estuary. This study shows that the undulate seabed record is resulted from wave action, rather than the presence of sand waves, and the filtration technique helps to eliminate the wave effect and recover the real morphology of seabed and the sediment sequence underneath. In addition, a method for data processing is proposed for the case that the record indeed represents a combination of wave effects and real bedforms.展开更多
-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under...-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.展开更多
Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents...Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.展开更多
A three-dimensional,high resolution,Finite Volume Coastal Ocean Model(FVCOM) is used to diagnose the influences of winds during the fall of 2001 on the salt balance of the Tampa Bay.To distinguish the wind effecting...A three-dimensional,high resolution,Finite Volume Coastal Ocean Model(FVCOM) is used to diagnose the influences of winds during the fall of 2001 on the salt balance of the Tampa Bay.To distinguish the wind effecting,two experiments are designed:one is driven by tides and rivers;the other is driven by tides,rivers and winds.First,the salinity change induced by wind is provided.Wind forcing can significantly increase the salinity inside the Tampa Bay,along with decreases of horizontal and vertical salt gradients.Subsequently,the salt balance principles are detailed addressed.The primary salt balance is between the total(horizontal plus vertical)advective salt flux divergence and vertical diffusive salt flux divergence except at the channel bottom where horizontal diffusive salt flux divergence comes into play.At last,the salt balance variation induced by winds is further addressed.Wind forcing does not change the relative importance of salt balance terms.The variations of the salt balance terms influenced by winds are highly dependent on the specific locations.Besides,the variations of the total advective salt flux divergence and the vertical diffusive salt flux divergence are nearly couterbalance,and both of two terms are much greater than that of the horizontal diffusive salt flux divergence.展开更多
To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated accordi...To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects, and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.展开更多
In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to...In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to 2016,through the methods of kriging interpolation,leastsquares,correlation coefficient testing,and empirical orthogonal function(EOF)analysis.The results show that the annual MWS is larger than 3 m s-1 and the EWED is larger than 75 W m-2 in northern China and parts of coastal areas.However,the MWS and EWED values in southern China are all smaller than in northern China.Over the past 50 years,the annual and seasonal MWS in China has shown a significant decreasing trend,with the largest rate of decline in spring for northern China and winter for coastal areas.The annual MWS in some areas of Guangdong has an increasing trend,but it shows little change in southwestern China,South China,and west of Central China.Where the MWS is high,the rate of decline is also high.The main spatial distributions of the annual MWS and the annual EWED show high consistency,with a decreasing trend year by year.The decreasing trend of wind speed and wind energy resources in China is mainly related to global warming and land use/cover change.展开更多
Lesser kestrels Falco naumanni are migratory central-place foragers that breed in dynamic arable landscapes. After arriving from migration, kestrels have no knowledge of the distribution of crops, and consequently pre...Lesser kestrels Falco naumanni are migratory central-place foragers that breed in dynamic arable landscapes. After arriving from migration, kestrels have no knowledge of the distribution of crops, and consequently prey, around their colony. The energy demand of pairs increases as breeding season progresses, but at the same time prey abundance, and their knowledge on prey distribution, also increases. Wind can have a strong influence on flight cost and kestrels should try to reduce energy expendi- ture when possible. When prey abundance is low, kestrels have little knowledge of prey distribution, and pairs have no chicks, they could reduce foraging flight cost by leaving the colony with tailwinds. When prey is abundant, knowledge on prey distribu- tion has increased, and chick demand is high, kestrels should fly to the most favorable foraging patches. We analyzed foraging trips directions in a lesser kestrel colony along the breeding season and in relation to wind speed and direction. We recorded 664 foraging trips from 19 individuals using GPS-dataloggers. We found that outward flights direction changed from uniform to a concentrated distribution along the season, as prey abundance and individual experience increased. We also found a temporal trend in the angular difference between outward flights and wind directions, with low values early in the season and then increa- sing as expected, but again low values at the end, contrary to expectation. Results suggest changes in kestrels foraging strategy along the season in relation to wind. Kestrels depart more with tailwinds in exploratory flights early in the season, while there is a spurious coincidence in direction to preferred foraging patches and dominant wind direction at the end [Current Zoology 60 (5): 604-615, 2014].展开更多
Based on the analysis of ocean dynamic condition and sediment environment, conclusions can be drawn that strong wind is an essential factor influencing sudden sedimentation in outer channel. Through theoretical analys...Based on the analysis of ocean dynamic condition and sediment environment, conclusions can be drawn that strong wind is an essential factor influencing sudden sedimentation in outer channel. Through theoretical analysis, it changes the complex process that wind raises wave, wave tilts sediment and current transports sediment into a comprehensive factor, and obtains mathematical formula between effective wind energy and the thickness of sudden sedimentation. The parametees in this formula are determined with field data of Huanghua Port. It may be used to predict siltation thickness and volume along the channel. By analyzing and comparing the difference in ocean hydrodynamic conditions and seabed material between Huanghua Port and Binzhou Port, the proposed formula can be used to predict sudden sedimentation in Binzhou Port and the calculated results is rehable. By predicting it on different combination plans among different recurrence in- tervals, entrance locations and channel classes, it provides references for the plane design of Binzhou Port.展开更多
This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time doma...This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.展开更多
The tide-induced net advective salt flux in well-mixed estuaries consists of five terms according to the method from Kjerfve.The term resulted from the vertical variation in salinity can be negligible in well-mixed es...The tide-induced net advective salt flux in well-mixed estuaries consists of five terms according to the method from Kjerfve.The term resulted from the vertical variation in salinity can be negligible in well-mixed estuaries with four tide-induced salt flux terms,known as F1−F4.To explore the effects of wind on these salt fluxes,the current-salinity analytical model combined with the perturbation analysis is extended by including wind.Analytical expressions for the four salt fluxes are derived separately in the present model.Under the assumption that only the M_(2) tidal component is accounted for and the salt flux generated by diffusion is not studied,the tide-induced net advective salt flux Q_(sx) is in the seaward direction without the wind effect.By applying the Western Scheldt estuary case,the wind influence on the tidal advection salt flux(TASF)distribution in the F4 term was investigated.The phase difference between zero-order velocity and first-order salinity(Δφ)at the surface layer of the estuary is larger than 90°and smaller than 90°at the bottom layer,which leads to landward TASF in the surface layer and seaward TASF in the bottom layer.The distribution ofΔφis not uniform in the horizontal direction with wind included,which differs from the result without wind.In the case of seaward wind with the speed of 18 m/s,the decrease in the zeroth-order velocity phase(φu)at the surface layer is larger than that of the first-order salinity phase(φs)downstream,which leads to an abnormal seaward TASF in this region.Owing to the surface stress caused by wind,the Stokes compensation flow in the middle and lower reaches increases/decreases with the increase of the landward/seaward wind,while the upstream situation is opposite.Thus,the first-order velocity in the middle and lower reaches increases/decreases with the increase of the landward/seaward wind,while the upstream situation is also opposite.The first-order salinity also increases/decreases with the increase of landward/seaward wind,while the upstream salinity tends to zero.Therefore,the tide-induced net advective salt flux Q_(sx) increases/decreases with the increase of the landward/seaward wind,which is contrary to the usual recognition.展开更多
Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMO...Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to remove rain effects on "Jason-1" normalized radar cross section (NRCS); Hurricane Research Division (HRD) wind sPeed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with "Jason-l" NRCS. Then, an improved "Jason-l" wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.展开更多
This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using ...This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.展开更多
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio(ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front(E...Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio(ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front(ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting(WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer(MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.展开更多
In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the oce...In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.展开更多
[Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanx...[Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanxi Province in late July 2010 as an example, data of five Doppler weather radars in Shaanxi Province were employed for a detailed analysis of the evolution of the heavy rainstorm pro- cess. [Result] Besides the good large-scale weather background conditions, the de- velopment and evolution of some mesoscale and small-scale weather systems direct- ly led to short-term heavy precipitations during the heavy rainstorm process, involv- ing the intrusion of moderate IS-scale weak cold air and presence of small-scale wind shear, convergence and adverse wind area. In addition, small-scale convection echoes were arranged in lines and formed a "train effect", which would also con- tribute to the generation of short-term heavy precipitation. [Conclusion] This study provided basic information for more clear and in-depth analysis of the formation mechanism of short-term heavy precipitations.展开更多
基金This study was co-supported by the National Key Research and Development Program of China(No.2020YFC1512500),The Advanced Aviation Power Innovation institution,The Aero Engine Academy of China,and Tsinghua University Initiative Scientific Research Program,China.
文摘Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.
基金National Natural Science Foundation of China under Grant Nos.51222801 and 51378134Yangcheng Scholarship in Guangzhou Municipal Universities under Project No.12A004Sthe Research Funding for Ph.D Programme in Higher Education Universities under Project No.20124410110005
文摘Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind effects on a long-span steel roof structure during the passage of Typhoon Fanapi. Some fi eld data, including wind speed and direction, acceleration responses, etc., were continuously and simultaneously recorded during the passage of the typhoon. Comprehensive analysis of the measured data is conducted to evaluate the typhoon-generated wind characteristics and its effects on a long-span steel roof. The fi rst four natural frequencies and their vibration mode shapes of the Guangzhou International Sports Arena(GISA) roof are evaluated by the stochastic subspace identifi cation(SSI) method and comparisons with those from fi nite element(FE) analysis are made. Meanwhile, damping ratios of the roof are also identifi ed by the SSI method and compared with those identifi ed by the random decrement method; the amplitude-dependent damping behaviors are also discussed. The fullscale measurement results are further compared with the corresponding wind tunnel test results to evaluate its reliability. The results obtained from this study are valuable for academic and professional engineers involved in the design of large-span roof structures.
基金This research was supported by the 100-Young-Researcher Project of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).
文摘Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been the field of silviculture, but increasing recognition of the importance and complexity of the subject has recently got people involved from many other disciplines. Due to the global climate changes, it is believed that the risk of further and stronger storms is increasing. In order to better understand the effects of wind on individual trees, forest stand and forest ecosystem, and further to practice the management of forests, it is necessary to summarize the research results related to this subject. This review was mostly based on the references from recent researches in the field, especially from the symposium volumes of some international conferences on this subject. The results indicated that there have been significant progresses in the following aspects: 1) the aerodynamic interaction between wind and trees, 2) the mechanics of trees under wind loading and adaptive growth, 3) the tree's physiological responses to wind, and 4) the risk assessment of wind damage to forest. However, there are some aspects which may need further studies: 1) wind damage to natural forests, 2) wind-driven gap formation and forest dynamics, 3) the effects of changes resulted from wind disturbances on ecological processes of forest ecosystem, and 4) management for the wind-damaged forests. Key words Wind - Wind effect - Trees/forest - Forest ecology - Disturbance CLC number S718 Document code B Foundation item: This research was supported by “the 100-Young-Researcher Project” of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).Biography: ZHU Jiao-jun (1965-), male, Ph. Doctor, Professor of Institute of Applied Ecology, Chinese Academy of Sciences, Professor of Graduate School of Chinese Academy of Sciences. China. Scholar researcher of Faculty of Agriculture, Niigata University, JapanResponsible editor: Song Funan
基金supported by the National Natural Science Foundation of China (90715040)
文摘Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.
基金The workis supported bythe National Natural Science Foundation of China (Grant Nos 40231010 and 40476041)
文摘With the presence of wind waves, the swaying of survey vessel may effect the quality of sub-bottom profiler records and, therefore, it is necessary to correct the distortions induced by wave action. A major issue is to distinguish wind wave effect and real bedforms such as sand waves. In this paper, a bandstop filter is designed according to the frequency features of wind wave effect to treat the distortion of seabed topography by wind waves. The technique is used to correct the sub-bottom profile in order to eliminate the wave-induced distortions for the sub-bottom profile records from the Yangtze Estuary. This study shows that the undulate seabed record is resulted from wave action, rather than the presence of sand waves, and the filtration technique helps to eliminate the wave effect and recover the real morphology of seabed and the sediment sequence underneath. In addition, a method for data processing is proposed for the case that the record indeed represents a combination of wave effects and real bedforms.
文摘-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.
文摘Because of the small stiffness and high flexibility, the tension membrane structure is easy to relax and damage or even destroy under the action of external load, which leads to the occurrence of engineering accidents. In this paper, the damped nonlinear vibration of tensioned membrane structure under the coupling action of wind and rain is approximately solved, considering the geometric nonlinearity of membrane surface deformation and the influence of air damping. Applying von Karman’s large deflection theory and D’Alembert’s principle, the governing equations are established for an analytical solution, and the experimental results are compared with the analytical results. The feasibility of this method is verified, which provides some theoretical reference for practical membrane structure engineering design and maintenance.
基金The Scientific Research Foundation of Third Institute of Oceanography,State Oceanic Administration under contract No.2014025The National Natural Science Foundation of China under contract Nos.41076003 and 41406070
文摘A three-dimensional,high resolution,Finite Volume Coastal Ocean Model(FVCOM) is used to diagnose the influences of winds during the fall of 2001 on the salt balance of the Tampa Bay.To distinguish the wind effecting,two experiments are designed:one is driven by tides and rivers;the other is driven by tides,rivers and winds.First,the salinity change induced by wind is provided.Wind forcing can significantly increase the salinity inside the Tampa Bay,along with decreases of horizontal and vertical salt gradients.Subsequently,the salt balance principles are detailed addressed.The primary salt balance is between the total(horizontal plus vertical)advective salt flux divergence and vertical diffusive salt flux divergence except at the channel bottom where horizontal diffusive salt flux divergence comes into play.At last,the salt balance variation induced by winds is further addressed.Wind forcing does not change the relative importance of salt balance terms.The variations of the salt balance terms influenced by winds are highly dependent on the specific locations.Besides,the variations of the total advective salt flux divergence and the vertical diffusive salt flux divergence are nearly couterbalance,and both of two terms are much greater than that of the horizontal diffusive salt flux divergence.
基金supported by the National Natural Science Foundation of China (No. 50708015)the Program for New Century Excellent Talents in University (No. NCET-06-0270), China
文摘To analyze wind-induced response characteristics of a wind turbine tower more accurately, the blade-tower coupling effect was investigated. The mean wind velocity of the rotating blades and tower was simulated according to wind shear effects, and the fluctuating wind velocity time series of the wind turbine were simulated by a harmony superposition method. A dynamic finite element method (FEM) was used to calculate the wind-induced response of the blades and tower. Wind-induced responses of the tower were calculated in two cases (one included the blade-tower coupling effect, and the other only added the mass of blades and the hub at the top of the tower), and then the maximal displacements at the top of the tower of the tow cases were compared with each other. As a result of the influence of the blade-tower coupling effect and the total base shear of the blades, the maximal displacement of the first case increased nearly by 300% compared to the second case. To obtain more precise analysis, the blade-tower coupling effect and the total base shear of the blades should be considered simultaneously in the design of wind turbine towers.
基金This work was supported by the National Key R&D Program of China[grant numbers 2016YFA0600403 and 2016YFA0602501]the General Project of the National Natural Science Foundation of China[grant number 41875134].
文摘In the paper,daily near-surface wind speed data from 462 stations are used to study the spatiotemporal characteristics of the annual and seasonal mean wind speed(MWS)and effective wind energy density(EWED)from 1960 to 2016,through the methods of kriging interpolation,leastsquares,correlation coefficient testing,and empirical orthogonal function(EOF)analysis.The results show that the annual MWS is larger than 3 m s-1 and the EWED is larger than 75 W m-2 in northern China and parts of coastal areas.However,the MWS and EWED values in southern China are all smaller than in northern China.Over the past 50 years,the annual and seasonal MWS in China has shown a significant decreasing trend,with the largest rate of decline in spring for northern China and winter for coastal areas.The annual MWS in some areas of Guangdong has an increasing trend,but it shows little change in southwestern China,South China,and west of Central China.Where the MWS is high,the rate of decline is also high.The main spatial distributions of the annual MWS and the annual EWED show high consistency,with a decreasing trend year by year.The decreasing trend of wind speed and wind energy resources in China is mainly related to global warming and land use/cover change.
文摘Lesser kestrels Falco naumanni are migratory central-place foragers that breed in dynamic arable landscapes. After arriving from migration, kestrels have no knowledge of the distribution of crops, and consequently prey, around their colony. The energy demand of pairs increases as breeding season progresses, but at the same time prey abundance, and their knowledge on prey distribution, also increases. Wind can have a strong influence on flight cost and kestrels should try to reduce energy expendi- ture when possible. When prey abundance is low, kestrels have little knowledge of prey distribution, and pairs have no chicks, they could reduce foraging flight cost by leaving the colony with tailwinds. When prey is abundant, knowledge on prey distribu- tion has increased, and chick demand is high, kestrels should fly to the most favorable foraging patches. We analyzed foraging trips directions in a lesser kestrel colony along the breeding season and in relation to wind speed and direction. We recorded 664 foraging trips from 19 individuals using GPS-dataloggers. We found that outward flights direction changed from uniform to a concentrated distribution along the season, as prey abundance and individual experience increased. We also found a temporal trend in the angular difference between outward flights and wind directions, with low values early in the season and then increa- sing as expected, but again low values at the end, contrary to expectation. Results suggest changes in kestrels foraging strategy along the season in relation to wind. Kestrels depart more with tailwinds in exploratory flights early in the season, while there is a spurious coincidence in direction to preferred foraging patches and dominant wind direction at the end [Current Zoology 60 (5): 604-615, 2014].
文摘Based on the analysis of ocean dynamic condition and sediment environment, conclusions can be drawn that strong wind is an essential factor influencing sudden sedimentation in outer channel. Through theoretical analysis, it changes the complex process that wind raises wave, wave tilts sediment and current transports sediment into a comprehensive factor, and obtains mathematical formula between effective wind energy and the thickness of sudden sedimentation. The parametees in this formula are determined with field data of Huanghua Port. It may be used to predict siltation thickness and volume along the channel. By analyzing and comparing the difference in ocean hydrodynamic conditions and seabed material between Huanghua Port and Binzhou Port, the proposed formula can be used to predict sudden sedimentation in Binzhou Port and the calculated results is rehable. By predicting it on different combination plans among different recurrence in- tervals, entrance locations and channel classes, it provides references for the plane design of Binzhou Port.
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine(OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0405401)the Open Research Foundation of Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation,Ministry of Water Resources(Grant No.[2018]KJ07)+1 种基金the Open Research Foundation of Key Laboratory of Coastal Disaster and Defence,Ministry of Education(Grant No.201706)the Six Talent Peaks Project in Jiangsu Province(Grant No.HYGC-0040).
文摘The tide-induced net advective salt flux in well-mixed estuaries consists of five terms according to the method from Kjerfve.The term resulted from the vertical variation in salinity can be negligible in well-mixed estuaries with four tide-induced salt flux terms,known as F1−F4.To explore the effects of wind on these salt fluxes,the current-salinity analytical model combined with the perturbation analysis is extended by including wind.Analytical expressions for the four salt fluxes are derived separately in the present model.Under the assumption that only the M_(2) tidal component is accounted for and the salt flux generated by diffusion is not studied,the tide-induced net advective salt flux Q_(sx) is in the seaward direction without the wind effect.By applying the Western Scheldt estuary case,the wind influence on the tidal advection salt flux(TASF)distribution in the F4 term was investigated.The phase difference between zero-order velocity and first-order salinity(Δφ)at the surface layer of the estuary is larger than 90°and smaller than 90°at the bottom layer,which leads to landward TASF in the surface layer and seaward TASF in the bottom layer.The distribution ofΔφis not uniform in the horizontal direction with wind included,which differs from the result without wind.In the case of seaward wind with the speed of 18 m/s,the decrease in the zeroth-order velocity phase(φu)at the surface layer is larger than that of the first-order salinity phase(φs)downstream,which leads to an abnormal seaward TASF in this region.Owing to the surface stress caused by wind,the Stokes compensation flow in the middle and lower reaches increases/decreases with the increase of the landward/seaward wind,while the upstream situation is opposite.Thus,the first-order velocity in the middle and lower reaches increases/decreases with the increase of the landward/seaward wind,while the upstream situation is also opposite.The first-order salinity also increases/decreases with the increase of landward/seaward wind,while the upstream salinity tends to zero.Therefore,the tide-induced net advective salt flux Q_(sx) increases/decreases with the increase of the landward/seaward wind,which is contrary to the usual recognition.
基金The National Natural Science Foundation of China under Nos 41201350 and 41228007the International Scientific and Technological Cooperation Projects of State Oceanic Adminstration under contact No.2011DFA22260the Knowledge Innovation Program of the Chinese Academy of Sciences under contact No.Y0S04300KB
文摘Rain effect and lack of in situ validation data are two main causes of tropical cyclone wind retrieval errors. The National Oceanic and Atmospheric Administration's Climate Prediction Center Morphing technique (CMORPH) rain rate is introduced to a match-up dataset and then put into a rain correction model to remove rain effects on "Jason-1" normalized radar cross section (NRCS); Hurricane Research Division (HRD) wind sPeed, which integrates all available surface weather observations, is used to substitute in situ data for establishing this relationship with "Jason-l" NRCS. Then, an improved "Jason-l" wind retrieval algorithm under tropical cyclone conditions is proposed. Seven tropical cyclones from 2003 to 2010 are studied to validate the new algorithm. The experimental results indicate that the standard deviation of this algorithm at C-band and Ku-band is 1.99 and 2.75 m/s respectively, which is better than the existing algorithms. In addition, the C-band algorithm is more suitable for sea surface wind retrieval than Ku-band under tropical cyclone conditions.
文摘This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.
文摘Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio(ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front(ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting(WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer(MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.
基金The National Natural Science Foundation of China under contract No.40576020
文摘In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current.
基金Supported by Special Fund for National Weather Service Forecaster of China (CMAYBY2011-050)~~
文摘[Objective] This study aimed to analyze the cause of the generation of short-term heavy precipitations in a regional heavy rainstorm in Shannxi Province. [Method] Taking a heavy rainstorm covering most parts of Shaanxi Province in late July 2010 as an example, data of five Doppler weather radars in Shaanxi Province were employed for a detailed analysis of the evolution of the heavy rainstorm pro- cess. [Result] Besides the good large-scale weather background conditions, the de- velopment and evolution of some mesoscale and small-scale weather systems direct- ly led to short-term heavy precipitations during the heavy rainstorm process, involv- ing the intrusion of moderate IS-scale weak cold air and presence of small-scale wind shear, convergence and adverse wind area. In addition, small-scale convection echoes were arranged in lines and formed a "train effect", which would also con- tribute to the generation of short-term heavy precipitation. [Conclusion] This study provided basic information for more clear and in-depth analysis of the formation mechanism of short-term heavy precipitations.