Based on the QuikSCAT data, the features of surface wind distribution of the typhoon Vongfong landfall process are analyzed. We have also studied the variance spectral configuration of the surface wind field using DCT...Based on the QuikSCAT data, the features of surface wind distribution of the typhoon Vongfong landfall process are analyzed. We have also studied the variance spectral configuration of the surface wind field using DCT (Discrete Cosine Transform). The conclusions are as follows: The near-surface wind field is highly asymmetric; the variance components of asymmetric surface wind field depend mainly on the airflow direction of wavenumber 1 and 2. When the typhoon moves west, there are two wave spectral centers lining up in the zonal direction, mainly the airflow from zonal wavenumber 2 and meridional wavenumber 2; when it moves north, there are two wave spectral centers in a meridional array, mainly the airflow from zonal wavenumber 1 and meridional wavenumber 2. The airflow for wavenumber 1 mainly contributes to the variance of the tangential wind while that for wavenumber 2 to the variance of the radial wind. The asymmetrical distribution changes with the large-scale environment and self-rotating circulation around the typhoon. When it approached land, the associated gale appears in front portion in the advancing direction of the storm. It is in effect similar to the model of Chen Lian-shou for typhoon-related gales NNW on the left front portion and SE on the right front portion.展开更多
Based on gradient wind equations, including frictional force, and considering the effect of the movement of a tropical cyclone on wind speed, the Fujita Formula is improved and further simplified, and the numerical sc...Based on gradient wind equations, including frictional force, and considering the effect of the movement of a tropical cyclone on wind speed, the Fujita Formula is improved and further simplified, and the numerical scheme for calculating the maximum wind speed radius and wind velocity distribution of a moving tropical cyclone is derived. In addition, the effect of frictional force on the internal structure of the tropical cyclone is discussed. By comparison with observational data, this numerical scheme demonstrates great advantages, i.e. it can not only describe the asymmetrical wind speed distribution of a tropical cyclone reasonably, but can also calculate the maximum wind speed in each direction within the typhoon domain much more accurately. Furthermore, the combination of calculated and analyzed wind speed distributions by the scheme is perfectly consistent with observations.展开更多
The wind pressure characteristics on a saddle roof at wind direction along the connection of the low points are systematically studied by the wind tunnel test. First, the distributions of the mean and the fluctuating ...The wind pressure characteristics on a saddle roof at wind direction along the connection of the low points are systematically studied by the wind tunnel test. First, the distributions of the mean and the fluctuating pressures on the saddle roof are provided. Through the wind pressure spectra, the process of generation, growth and break down of the vortex on the leading edge is presented from a microscopic aspect and then the distribution mechanism of the mean and fluctuating pressures along the vulnerable leading edge is explained. By analysis of the wind pressure spectra near the high points, it can be inferred that the body induced turbulence reflects itself as a high-frequency pressure fluctuation. Secondly, the third-and fourth-order statistical moments of the wind pressure are employed to identify the non-Gaussian nature of the pressure time history and to construct an easy tool to localize regions with a non-Gaussian feature. The cause of the non-Gaussian feature is discussed by virtue of the wind pressure spectra. It is concluded that the non-Gaussian feature of the wind pressure originates from the effects of flow separation and body-induced turbulence, and the former effect plays an obvious role.展开更多
Winding is an important part of the electrical machine and plays a key role in reliability.In this paper,the reliability of multiphase winding structure in permanent magnet machines is evaluated based on the Markov mo...Winding is an important part of the electrical machine and plays a key role in reliability.In this paper,the reliability of multiphase winding structure in permanent magnet machines is evaluated based on the Markov model.The mean time to failure is used to compare the reliability of different windings structure.The mean time to failure of multiphase winding is derived in terms of the underlying parameters.The mean time to failure of winding is affected by the number of phases,the winding failure rate,the fault-tolerant mechanism success probability,and the state transition success probability.The influence of the phase number,winding distribution types,multi three-phase structure,and fault-tolerant mechanism success probability on the winding reliability is investigated.The results of reliability analysis lay the foundation for the reliability design of permanent magnet machines.展开更多
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows t...Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows that the wind speed extrema obtained from station observations, as well as from modelling results in the framework of mesoscale models, can be divided into two groups according to their probability distribution laws. One group is specifically designated as black swans, with the other referred to as dragons (or dragon-kings). In this study we determined that the data of ERA5 accurately described the swans, but did not fully reproduce extrema related to the dragons;these extrema were identified only in half of ERA5 grid points. Weibull probability distribution function (PDF) parameters were identified in only a quarter of the pixels. The parameters were connected almost deterministically. This converted the Weibull function into a one-parameter dependence. It was not clear whether this uniqueness was a consequence of the features of the calculation algorithm used in ERA5, or whether it was a consequence of a relatively small area being considered, which had the same wind regime. Extremes of wind speed arise as mesoscale features and are associated with hydrodynamic features of the wind flow. If the flow was non-geostrophic and if its trajectory had a substantial curvature, then the extreme velocities were distributed according to a rule similar to the Weibull law.展开更多
The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the sur...The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the surface were obtained, and the relationships between the roughness Reynolds number and pressure distributions were analyzed and discussed. The results show that increasing the surface roughness can significantly affect the pressure distribution, and the roughness Reynolds numbers play an important role in the change of flow patterns. The three flow patterns of subcritical, critical and supercritical flows can be classified based on the changing patterns of both the mean and the fluctuating pressure distributions. The present study suggests that the wind tunnel results obtained in the supercritical pattern reflect more closely those of full-scale solid structure of revolution at the designed wind speed.展开更多
The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque an...The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation.展开更多
随着“碳中和,碳达峰”目标的提出,大规模、高容量、强随机性、清洁低碳的海上风电场集群并网,由于缺乏潮流调控手段,输电网将会出现潮流分布不均、断面输电能力达到瓶颈等问题,进而导致了严重的弃风现象。统一潮流控制器(unified power...随着“碳中和,碳达峰”目标的提出,大规模、高容量、强随机性、清洁低碳的海上风电场集群并网,由于缺乏潮流调控手段,输电网将会出现潮流分布不均、断面输电能力达到瓶颈等问题,进而导致了严重的弃风现象。统一潮流控制器(unified power flow controller,UPFC)可以主动控制潮流分布以解决断面输电能力出现瓶颈的问题,同时储能装置可以起到提升电网灵活性、激励新能源消纳的作用。针对海上风电集群并网带来的一系列挑战,提出将基于海上风电集群并网的UPFC与储能协同优化配置方法,将UPFC和储能装置的选址和定容同时作为决策变量,并考虑海上风电出力的不确定性和时序相关性,提出UPFC与储能协同配置的分布鲁棒优化方法。然后,采用二阶锥凸松弛、大M法等技术将原混合整数非凸非线性规划模型转化成混合整数二阶锥规划模型,以实现高效求解。最后,以某个209节点的海上风电集群并网的输电系统为算例进行仿真计算,验证所提模型和算法的有效性。展开更多
基金Special Fund Project for Social Benefit Research Study on the Monitoring and Predicting Techniques of Desasters by landding typhoons in China (2002DCA20026-01) Knowledge Innovation Project of The Chinese Academy of Sciences (ZKCXZ-SW-210)
文摘Based on the QuikSCAT data, the features of surface wind distribution of the typhoon Vongfong landfall process are analyzed. We have also studied the variance spectral configuration of the surface wind field using DCT (Discrete Cosine Transform). The conclusions are as follows: The near-surface wind field is highly asymmetric; the variance components of asymmetric surface wind field depend mainly on the airflow direction of wavenumber 1 and 2. When the typhoon moves west, there are two wave spectral centers lining up in the zonal direction, mainly the airflow from zonal wavenumber 2 and meridional wavenumber 2; when it moves north, there are two wave spectral centers in a meridional array, mainly the airflow from zonal wavenumber 1 and meridional wavenumber 2. The airflow for wavenumber 1 mainly contributes to the variance of the tangential wind while that for wavenumber 2 to the variance of the radial wind. The asymmetrical distribution changes with the large-scale environment and self-rotating circulation around the typhoon. When it approached land, the associated gale appears in front portion in the advancing direction of the storm. It is in effect similar to the model of Chen Lian-shou for typhoon-related gales NNW on the left front portion and SE on the right front portion.
基金supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 40425009 and 40730953
文摘Based on gradient wind equations, including frictional force, and considering the effect of the movement of a tropical cyclone on wind speed, the Fujita Formula is improved and further simplified, and the numerical scheme for calculating the maximum wind speed radius and wind velocity distribution of a moving tropical cyclone is derived. In addition, the effect of frictional force on the internal structure of the tropical cyclone is discussed. By comparison with observational data, this numerical scheme demonstrates great advantages, i.e. it can not only describe the asymmetrical wind speed distribution of a tropical cyclone reasonably, but can also calculate the maximum wind speed in each direction within the typhoon domain much more accurately. Furthermore, the combination of calculated and analyzed wind speed distributions by the scheme is perfectly consistent with observations.
基金The National Natural Science Foundation of China (No.50678036)Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘The wind pressure characteristics on a saddle roof at wind direction along the connection of the low points are systematically studied by the wind tunnel test. First, the distributions of the mean and the fluctuating pressures on the saddle roof are provided. Through the wind pressure spectra, the process of generation, growth and break down of the vortex on the leading edge is presented from a microscopic aspect and then the distribution mechanism of the mean and fluctuating pressures along the vulnerable leading edge is explained. By analysis of the wind pressure spectra near the high points, it can be inferred that the body induced turbulence reflects itself as a high-frequency pressure fluctuation. Secondly, the third-and fourth-order statistical moments of the wind pressure are employed to identify the non-Gaussian nature of the pressure time history and to construct an easy tool to localize regions with a non-Gaussian feature. The cause of the non-Gaussian feature is discussed by virtue of the wind pressure spectra. It is concluded that the non-Gaussian feature of the wind pressure originates from the effects of flow separation and body-induced turbulence, and the former effect plays an obvious role.
文摘Winding is an important part of the electrical machine and plays a key role in reliability.In this paper,the reliability of multiphase winding structure in permanent magnet machines is evaluated based on the Markov model.The mean time to failure is used to compare the reliability of different windings structure.The mean time to failure of multiphase winding is derived in terms of the underlying parameters.The mean time to failure of winding is affected by the number of phases,the winding failure rate,the fault-tolerant mechanism success probability,and the state transition success probability.The influence of the phase number,winding distribution types,multi three-phase structure,and fault-tolerant mechanism success probability on the winding reliability is investigated.The results of reliability analysis lay the foundation for the reliability design of permanent magnet machines.
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
文摘Extreme values of wind speed were studied based on the highly detailed ERA5 dataset covering the central part of the Kara Sea. Cases in which the ice coverage of the cells exceeded 15% were filtered. Our study shows that the wind speed extrema obtained from station observations, as well as from modelling results in the framework of mesoscale models, can be divided into two groups according to their probability distribution laws. One group is specifically designated as black swans, with the other referred to as dragons (or dragon-kings). In this study we determined that the data of ERA5 accurately described the swans, but did not fully reproduce extrema related to the dragons;these extrema were identified only in half of ERA5 grid points. Weibull probability distribution function (PDF) parameters were identified in only a quarter of the pixels. The parameters were connected almost deterministically. This converted the Weibull function into a one-parameter dependence. It was not clear whether this uniqueness was a consequence of the features of the calculation algorithm used in ERA5, or whether it was a consequence of a relatively small area being considered, which had the same wind regime. Extremes of wind speed arise as mesoscale features and are associated with hydrodynamic features of the wind flow. If the flow was non-geostrophic and if its trajectory had a substantial curvature, then the extreme velocities were distributed according to a rule similar to the Weibull law.
文摘The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the surface were obtained, and the relationships between the roughness Reynolds number and pressure distributions were analyzed and discussed. The results show that increasing the surface roughness can significantly affect the pressure distribution, and the roughness Reynolds numbers play an important role in the change of flow patterns. The three flow patterns of subcritical, critical and supercritical flows can be classified based on the changing patterns of both the mean and the fluctuating pressure distributions. The present study suggests that the wind tunnel results obtained in the supercritical pattern reflect more closely those of full-scale solid structure of revolution at the designed wind speed.
文摘The inductances in d-q axis have an important influence on the behavior of PMSM (PM (permanent-magnet) synchronous machines). Their calculation is fundamental not only to evaluate the performance such as torque and field weakening capability but also to design the control system to maximize performance and power factor. This paper presents a study of inductance in the d-q axis for buried (i.e., IPMSM (interior) PM Synchronous Machines). This study is achieved using 2-D (two-dimensional) FEM (finite-element method) and Park's transformation.
文摘随着“碳中和,碳达峰”目标的提出,大规模、高容量、强随机性、清洁低碳的海上风电场集群并网,由于缺乏潮流调控手段,输电网将会出现潮流分布不均、断面输电能力达到瓶颈等问题,进而导致了严重的弃风现象。统一潮流控制器(unified power flow controller,UPFC)可以主动控制潮流分布以解决断面输电能力出现瓶颈的问题,同时储能装置可以起到提升电网灵活性、激励新能源消纳的作用。针对海上风电集群并网带来的一系列挑战,提出将基于海上风电集群并网的UPFC与储能协同优化配置方法,将UPFC和储能装置的选址和定容同时作为决策变量,并考虑海上风电出力的不确定性和时序相关性,提出UPFC与储能协同配置的分布鲁棒优化方法。然后,采用二阶锥凸松弛、大M法等技术将原混合整数非凸非线性规划模型转化成混合整数二阶锥规划模型,以实现高效求解。最后,以某个209节点的海上风电集群并网的输电系统为算例进行仿真计算,验证所提模型和算法的有效性。