风力发电在我国能源结构中占比逐年攀升。对风能资源进行准确全面的评估是提升风电出力水平和消纳能力的先决条件。基于空间插值方法建立的高分辨率网格化风资源数据集,可对风资源进行大范围、格点化和精细化的有效评估。为提高风资源...风力发电在我国能源结构中占比逐年攀升。对风能资源进行准确全面的评估是提升风电出力水平和消纳能力的先决条件。基于空间插值方法建立的高分辨率网格化风资源数据集,可对风资源进行大范围、格点化和精细化的有效评估。为提高风资源数据集的准确性,文章提出了一种基于K-means++自适应的改进反距离加权插值方法(K-means++adaptive inverse distance weighted interpolation method,K-means++AIDW)。使用该方法对山东地区2022年全年109个国家级气象观测站点的风速实测数据进行处理,构建空间分辨率为9km×9km的网格点,使用风速实测数据逐小时对网格点进行插值填补,得到高分辨率的网格化风资源数据集。将插值后的结果与原始观测数据进行比较发现,与传统反距离加权法(inverse distance weighting,IDW)和Kriging插值方法相比,所设计的K-means++AIDW插值方法平均绝对误差较IDW方法降低了5.4%,较Kriging方法降低了7.8%;均方根误差较IDW方法降低了5.9%,较Kriging方法降低了8.1%,显示出其在整体误差控制上的优势。与空间分辨率0.25°×0.25°的再分析回算数据集ERA5(Fifth Generation of European Centre for Medium-range Weather Forecasts Atmospheric Reanalysis of the Global Climate)的风资源要素相比,所设计的K-means++AIDW插值数据集平均绝对误差和均方根误差平均降低了11.95%和10.07%,验证了所设计插值方法的准确有效性,以及生成的高分辨率网格化数据集的精准可靠性,可作为评估山东省的风能资源潜力的可靠数据基础,为风能资源管理和风电场选址等领域提供准确的数据支持。展开更多
通过对WRF⁃Chem(Weather Research and Forecasting Model Coupled to Chemistry)环境模式模拟资料、HYSPLIT(HYbrid Single Particle Lagrangian Integrated Trajectory Model)前/后向气团轨迹资料、环境站监测资料,以及西安理工大学(X...通过对WRF⁃Chem(Weather Research and Forecasting Model Coupled to Chemistry)环境模式模拟资料、HYSPLIT(HYbrid Single Particle Lagrangian Integrated Trajectory Model)前/后向气团轨迹资料、环境站监测资料,以及西安理工大学(Xi′an University of Technology,简称XUT)多波长激光雷达、米散射激光雷达、能见度仪、粒谱仪等观测资料的综合诊断,探讨了2019年1月初发生在西安的雾霾过程(记为首场雾霾)PM2.5组分、分布及传输特征,旨在为雾霾气溶胶研究提供有益的个例积累.定性、定量双重检验表明,Chem模式较成功复制了此次雾霾气溶胶过程.利用这些可靠的模式数据分析表明,PM2.5中碳气溶胶的主要组分为有机碳,约占85%,强盛期气溶胶各组分随高度增加均呈递减趋势,各组分近地面浓度最高.通过对两类不同方法获取的消光系数对比分析表明,相比于模式数据,激光雷达数据具有更高的垂直分辨率,因此,更善于描述消光廓线的细节特征.通过对多源资料的综合诊断最终揭示出,“北风涌”是雾霾消散的关键影响因子,沿铜川⁃西安⁃山阳一带存在着污染物传输的重要路径,雾霾由此体现出自北向南依次消散的特征.展开更多
文摘风力发电在我国能源结构中占比逐年攀升。对风能资源进行准确全面的评估是提升风电出力水平和消纳能力的先决条件。基于空间插值方法建立的高分辨率网格化风资源数据集,可对风资源进行大范围、格点化和精细化的有效评估。为提高风资源数据集的准确性,文章提出了一种基于K-means++自适应的改进反距离加权插值方法(K-means++adaptive inverse distance weighted interpolation method,K-means++AIDW)。使用该方法对山东地区2022年全年109个国家级气象观测站点的风速实测数据进行处理,构建空间分辨率为9km×9km的网格点,使用风速实测数据逐小时对网格点进行插值填补,得到高分辨率的网格化风资源数据集。将插值后的结果与原始观测数据进行比较发现,与传统反距离加权法(inverse distance weighting,IDW)和Kriging插值方法相比,所设计的K-means++AIDW插值方法平均绝对误差较IDW方法降低了5.4%,较Kriging方法降低了7.8%;均方根误差较IDW方法降低了5.9%,较Kriging方法降低了8.1%,显示出其在整体误差控制上的优势。与空间分辨率0.25°×0.25°的再分析回算数据集ERA5(Fifth Generation of European Centre for Medium-range Weather Forecasts Atmospheric Reanalysis of the Global Climate)的风资源要素相比,所设计的K-means++AIDW插值数据集平均绝对误差和均方根误差平均降低了11.95%和10.07%,验证了所设计插值方法的准确有效性,以及生成的高分辨率网格化数据集的精准可靠性,可作为评估山东省的风能资源潜力的可靠数据基础,为风能资源管理和风电场选址等领域提供准确的数据支持。
文摘通过对WRF⁃Chem(Weather Research and Forecasting Model Coupled to Chemistry)环境模式模拟资料、HYSPLIT(HYbrid Single Particle Lagrangian Integrated Trajectory Model)前/后向气团轨迹资料、环境站监测资料,以及西安理工大学(Xi′an University of Technology,简称XUT)多波长激光雷达、米散射激光雷达、能见度仪、粒谱仪等观测资料的综合诊断,探讨了2019年1月初发生在西安的雾霾过程(记为首场雾霾)PM2.5组分、分布及传输特征,旨在为雾霾气溶胶研究提供有益的个例积累.定性、定量双重检验表明,Chem模式较成功复制了此次雾霾气溶胶过程.利用这些可靠的模式数据分析表明,PM2.5中碳气溶胶的主要组分为有机碳,约占85%,强盛期气溶胶各组分随高度增加均呈递减趋势,各组分近地面浓度最高.通过对两类不同方法获取的消光系数对比分析表明,相比于模式数据,激光雷达数据具有更高的垂直分辨率,因此,更善于描述消光廓线的细节特征.通过对多源资料的综合诊断最终揭示出,“北风涌”是雾霾消散的关键影响因子,沿铜川⁃西安⁃山阳一带存在着污染物传输的重要路径,雾霾由此体现出自北向南依次消散的特征.