The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic w...The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic wigs is proposed and the design of an automated bionic wig weaving machine is presented based on an analysis of manual weaving principles and processes.Furthermore,according to the characteristics of the weaving machine and the distribution pattern of weaving nodes,the minimum weaving duration of a single hairnet is taken as the optimization goal,and a continuous weaving path planning for the weaving process of the mixed scheme is conducted.The weaving duration for various weaving paths are calculated and compared,and the results indicate that the duration of the S-shaped weaving path is always the shortest in different weaving regions.The designed automated weaving process and the weaving path planning provide a theoretical foundation and experimental data for achieving automated weaving of bionic wigs.展开更多
Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of hi...Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]展开更多
Yu Gaohua,in his early 40s,frequently travels across China to collect human hair.Each trip lasts about half a month,after which he returns to his hometown to sell what he has collected.His hometown,Juancheng County in...Yu Gaohua,in his early 40s,frequently travels across China to collect human hair.Each trip lasts about half a month,after which he returns to his hometown to sell what he has collected.His hometown,Juancheng County in Shandong's Heze City,is nationally famous for its wig industry,hosting over 20 openair hair trading fairs each month.展开更多
基金Yuzhou Olandi Arts&Crafts Co.,Ltd.,Project of Development and Research of Wig Planting Equipment,China(No.HX103210723)。
文摘The traditional production of bionic wigs through manual weaving is a complex process characterized by high labor intensity,making automation challenging.To address this issue,an automated weaving process for bionic wigs is proposed and the design of an automated bionic wig weaving machine is presented based on an analysis of manual weaving principles and processes.Furthermore,according to the characteristics of the weaving machine and the distribution pattern of weaving nodes,the minimum weaving duration of a single hairnet is taken as the optimization goal,and a continuous weaving path planning for the weaving process of the mixed scheme is conducted.The weaving duration for various weaving paths are calculated and compared,and the results indicate that the duration of the S-shaped weaving path is always the shortest in different weaving regions.The designed automated weaving process and the weaving path planning provide a theoretical foundation and experimental data for achieving automated weaving of bionic wigs.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Fundamental Research Funds for the Central Universities(No.ILA220101A23)CARDC Fundamental and Frontier Technology Research Fund(No.PJD20200210)the Aeronautical Science Foundation of China(No.20200023052002).
文摘Under complex flight conditions,such as obstacle avoidance and extreme sea state,wing-in-ground(WIG)effect aircraft need to ascend to higher altitudes,resulting in the disappearance of the ground effect.A design of high-speed WIG airfoil considering non-ground effect is carried out by a novel two-step inverse airfoil design method that combines conditional generative adversarial network(CGAN)and artificial neural network(ANN).The CGAN model is employed to generate a variety of airfoil designs that satisfy the desired lift-drag ratios in both ground effect and non-ground effect conditions.Subsequently,the ANN model is utilized to forecast aerodynamic parameters of the generated airfoils.The results indicate that the CGAN model contributes to a high accuracy rate for airfoil design and enables the creation of novel airfoil designs.Furthermore,it demonstrates high accuracy in predicting aerodynamic parameters of these airfoils due to the ANN model.This method eliminates the necessity for numerical simulations and experimental testing through the design procedure,showcasing notable efficiency.The analysis of airfoils generated by the CGAN model shows that airfoils exhibiting high lift-drag ratios under both flight conditions typically have cambers of among[0.08c,0.105c],with the positions of maximum camber occurring among[0.35c,0.5c]of the chord length,and the leading-edge radiuses of these airfoils primarily cluster among[0.008c,0.025c]
文摘Yu Gaohua,in his early 40s,frequently travels across China to collect human hair.Each trip lasts about half a month,after which he returns to his hometown to sell what he has collected.His hometown,Juancheng County in Shandong's Heze City,is nationally famous for its wig industry,hosting over 20 openair hair trading fairs each month.