The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(M...The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.展开更多
A full-wave analysis of the electromagnetic problem of a three-dimensional (3-D) antenna radiating through a 3-D dielectric radome is preserued. The problem is formulated using the Poggio-Miller-Chang-Harrington- Wu...A full-wave analysis of the electromagnetic problem of a three-dimensional (3-D) antenna radiating through a 3-D dielectric radome is preserued. The problem is formulated using the Poggio-Miller-Chang-Harrington- Wu(PMCHW) approach for homogeneous dielectric objects and the electric field integral equation for conducting objects. The integral equations are discretized by the method of moment (MoM), in which the conducting and dielectric surface/interfaces are represented by curvilinear triangular patches and the unknown equivalent electric and magnetic currents are expanded using curvilinear RWG basis functions. The resultant matrix equation is then solved by the multilevel fast multipole algorithm (MLFMA) and fast far-field approximation (FAFFA) is used to further accelerate the computation. The radiation patterns of dipole arrays in the presence of radomes are presented. The numerical results demonstrate the accuracy and versatility of this method.展开更多
A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-M...A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.展开更多
As the fastest integral equation solver to date, the multilevel fast multipole algorithm (MLFMA) has been applied successfully to solve electromagnetic scattering and radiation from 3D electrically large objects. Bu...As the fastest integral equation solver to date, the multilevel fast multipole algorithm (MLFMA) has been applied successfully to solve electromagnetic scattering and radiation from 3D electrically large objects. But for very large-scale problems, the storage and CPU time required in MLFMA are still expensive. Fast 3D electromagnetic scattering and radiation solvers are introduced based on MLFMA. A brief review of MLFMA is first given. Then, four fast methods including higher-order MLFMA (HO-MLFMA), fast far field approximation combined with adaptive ray propagation MLFMA (FAFFA-ARP-MLFMA), local MLFMA and parallel MLFMA are introduced. Some typical numerical results demonstrate the efficiency of these fast methods.展开更多
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
由于水底和水面的影响,结构在有限水深环境中的辐射声场与在自由空间中的辐射声场有很大区别。为了更高效准确地分析有限水深环境中大规模结构的辐射声场,文章构建一种快速边界元法(boundary element method,BEM)。采用宽频快速多极算...由于水底和水面的影响,结构在有限水深环境中的辐射声场与在自由空间中的辐射声场有很大区别。为了更高效准确地分析有限水深环境中大规模结构的辐射声场,文章构建一种快速边界元法(boundary element method,BEM)。采用宽频快速多极算法对计算过程进行加速处理,针对算法中最为耗时的M2L/F2H变换过程,通过建立判定准则将均匀层格林函数中的多阶虚源分为近场和远场,从而设计不同求解方案,极大减少M2L/F2H的变换次数,显著提高求解效率。数值算例验证了文章方法的准确性和高效性,并体现出该方法在浅海声学分析中的工程潜力。展开更多
基金supported by the National Basic Research Program of China (973 Program) (61320)
文摘The method of establishing data structures plays an important role in the efficiency of parallel multilevel fast multipole algorithm(PMLFMA).Considering the main complements of multilevel fast multipole algorithm(MLFMA) memory,a new parallelization strategy and a modified data octree construction scheme are proposed to further reduce communication in order to improve parallel efficiency.For far interaction,a new scheme called dynamic memory allocation is developed.To analyze the workload balancing performance of a parallel implementation,the original concept of workload balancing factor is introduced and verified by numerical examples.Numerical results show that the above measures improve the parallel efficiency and are suitable for the analysis of electrical large-scale scattering objects.
基金the National Natural Science Foundation of China (60431010)
文摘A full-wave analysis of the electromagnetic problem of a three-dimensional (3-D) antenna radiating through a 3-D dielectric radome is preserued. The problem is formulated using the Poggio-Miller-Chang-Harrington- Wu(PMCHW) approach for homogeneous dielectric objects and the electric field integral equation for conducting objects. The integral equations are discretized by the method of moment (MoM), in which the conducting and dielectric surface/interfaces are represented by curvilinear triangular patches and the unknown equivalent electric and magnetic currents are expanded using curvilinear RWG basis functions. The resultant matrix equation is then solved by the multilevel fast multipole algorithm (MLFMA) and fast far-field approximation (FAFFA) is used to further accelerate the computation. The radiation patterns of dipole arrays in the presence of radomes are presented. The numerical results demonstrate the accuracy and versatility of this method.
文摘A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.
基金the National Natural Science Foundation of China (60431010, 60601008)the New CenturyExcellent Talent Support Plan of China (NCET-05-0805)+2 种基金the International Joint Research Project ("111" Project)(b07048)the"973" Programs 61360(2008CB317110)Young Doctor Displine Platform University of Electronic Science and Technology of China.
文摘As the fastest integral equation solver to date, the multilevel fast multipole algorithm (MLFMA) has been applied successfully to solve electromagnetic scattering and radiation from 3D electrically large objects. But for very large-scale problems, the storage and CPU time required in MLFMA are still expensive. Fast 3D electromagnetic scattering and radiation solvers are introduced based on MLFMA. A brief review of MLFMA is first given. Then, four fast methods including higher-order MLFMA (HO-MLFMA), fast far field approximation combined with adaptive ray propagation MLFMA (FAFFA-ARP-MLFMA), local MLFMA and parallel MLFMA are introduced. Some typical numerical results demonstrate the efficiency of these fast methods.
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
文摘由于水底和水面的影响,结构在有限水深环境中的辐射声场与在自由空间中的辐射声场有很大区别。为了更高效准确地分析有限水深环境中大规模结构的辐射声场,文章构建一种快速边界元法(boundary element method,BEM)。采用宽频快速多极算法对计算过程进行加速处理,针对算法中最为耗时的M2L/F2H变换过程,通过建立判定准则将均匀层格林函数中的多阶虚源分为近场和远场,从而设计不同求解方案,极大减少M2L/F2H的变换次数,显著提高求解效率。数值算例验证了文章方法的准确性和高效性,并体现出该方法在浅海声学分析中的工程潜力。