Shape prediction of deformable linear objects(DLO)plays critical roles in robotics,medical devices,aerospace,and manufacturing,especially in manipulating objects such as cables,wires,and fibers.Due to the inherent fle...Shape prediction of deformable linear objects(DLO)plays critical roles in robotics,medical devices,aerospace,and manufacturing,especially in manipulating objects such as cables,wires,and fibers.Due to the inherent flexibility of DLO and their complex deformation behaviors,such as bending and torsion,it is challenging to predict their dynamic characteristics accurately.Although the traditional physical modeling method can simulate the complex deformation behavior of DLO,the calculation cost is high and it is difficult to meet the demand of real-time prediction.In addition,the scarcity of data resources also limits the prediction accuracy of existing models.To solve these problems,a method of fiber shape prediction based on a physical information graph neural network(PIGNN)is proposed in this paper.This method cleverly combines the powerful expressive power of graph neural networks with the strict constraints of physical laws.Specifically,we learn the initial deformation model of the fiber through graph neural networks(GNN)to provide a good initial estimate for the model,which helps alleviate the problem of data resource scarcity.During the training process,we incorporate the physical prior knowledge of the dynamic deformation of the fiber optics into the loss function as a constraint,which is then fed back to the network model.This ensures that the shape of the fiber optics gradually approaches the true target shape,effectively solving the complex nonlinear behavior prediction problem of deformable linear objects.Experimental results demonstrate that,compared to traditional methods,the proposed method significantly reduces execution time and prediction error when handling the complex deformations of deformable fibers.This showcases its potential application value and superiority in fiber manipulation.展开更多
Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Thro...Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Through cutting sand-cement grout samples, the spacing interval of boreholes can approach 17.5 times of the bore-hole' s diameter, and the result of the directional expansion of crack is satisfactory. The result of field experiment indicates cutting effect is very good, the ruggedness in fracture plane is less than 50 mm, the rate of half-hole marks is nearly 100 % , and the crack inspection shows that there is no damage in the internal of the cutting part. All these suggest that the orientation fracture blasting with LSC is a good means in directional fracture controlled blasting and is worth popularizing widely.展开更多
This paper describes a simple method of generating concentration gradients with linear and parabolic profiles by using a Christmas tree-shaped microfluidic network.The microfluidic gradient generator consists of two p...This paper describes a simple method of generating concentration gradients with linear and parabolic profiles by using a Christmas tree-shaped microfluidic network.The microfluidic gradient generator consists of two parts:a Christmas tree-shaped network for gradient generation and a broad microchannel for detection.A two-dimensional model was built to analyze the flow field and the mass transfer in the microfluidic network.The simulating results show that a series of linear and parabolic gradient profiles were generated via adjusting relative flow rate ratios of the two source solutions(R_L^2≥0.995 and _PR^2≥0.999),which could match well with the experimental results(R_L^2≥0.987 and _PR^2≥0.996).The proposed method is promising for the generation of linear and parabolic concentration gradient profiles,with the potential in chemical and biological applications such as combinatorial chemistry synthesis,stem cell differentiation or cytotoxicity assays.展开更多
Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs...Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs) formed between the PCL polymers and α-CD were characterized by ^1H-NMR, DSC, TGA, WAXD, and FT-1R, respectively. Both branch ann number and molecular weight of the PCL polymers have apparent effect on the stoichiometry (CL:CD, mol:mol) of these ICs. All these analytical results indicate that the branch arms of the PCL polymers are incorporated into the hydrophobic α-CD cavities and their original crystalline properties are completely suppressed. Moreover, the inclusion complexation between two-ann linear or four-ann star-shaped PCL polymers and α-CD not only enhances the thermal stability of the vip PCL polymers but also improves that of α-CD.展开更多
In this paper, we want to make a new type linear piezoelectric motor by mode shape coating or effective electrode surface coating. The mode shape is derived from the mechanical boundary conditions of the linear piezoe...In this paper, we want to make a new type linear piezoelectric motor by mode shape coating or effective electrode surface coating. The mode shape is derived from the mechanical boundary conditions of the linear piezoelectric motor. We only have access to the first three modes of formas, the effective electrode surface coating basis, as well as with the linear piezoelectric motor of normal shape do comparison. Next, we will inspect their gain or axial velocity through theoretical analysis, simulation and experiment. According to the results of the theoretical analysis, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much larger than the linear piezoelectric motors of normal shape. However, according to the results of simulation and experiments, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much greater than the linear piezoelectric motors of normal shape, which is about 1.2 to 1.4 times. The linear piezoelectric motor of mode shape 3 has the fastest axial velocity, which is about -48 mm/s and 48 mm/s under conditions of 180 Vp-p driving voltage, 21.2 kHz driving frequency (the third vibration modal), 25 gw loading and the position of loading or mass at x = 5 mm & 45 mm respectively. And its axial velocity is about 1.4 times the linear piezoelectric motor of normal shape under the same conditions. Overall, the mode shape coating helps to enhance the gain or axial velocity of the linear piezoelectric motor.展开更多
Based on the Brinson constitutive model of SMA, a piecewise linear model for the hysteresis loop of pseudo-elasticity is proposed and applied in the analysis of responses of an SMA-spring-mass system under initial vel...Based on the Brinson constitutive model of SMA, a piecewise linear model for the hysteresis loop of pseudo-elasticity is proposed and applied in the analysis of responses of an SMA-spring-mass system under initial velocity activation. The histories of displacement and velocity of the mass, and the response of stress of SMA are calculated with Brinson’s model and the piecewise linear model. The difference of results of the two models is not significant. The calculation with piecewise-linear model needs no iteration and is highly efficient.展开更多
The linear shaped charge cutting technology is an effective technology for aircraft separation.It can separate invalid components from aircrafts timely to achieve light-weight.Magnesium alloy is the lightest metal mat...The linear shaped charge cutting technology is an effective technology for aircraft separation.It can separate invalid components from aircrafts timely to achieve light-weight.Magnesium alloy is the lightest metal material,and can be used to cast effective light-weight components of an aircraft construction.However,the application study of the linear shaped charge cutting technology on magnesium alloy components is basically blank.In response to the demand for the linear separation of magnesium alloys,the Mg-12Gd-0.5Y-0.4Zn alloy is selected to carry out the target shaped charge cutting test.The effects of the shaped charge line density,cutting thickness,and mechanical properties on the cutting performance of the alloy are studied.The shaped charge cutting mechanism is analyzed through the notch structure.The results show that the linear shaped charge cutting performance is significantly affected by the penetration and the collapse.The higher the linear density is,the stronger the ability of the linear shaped charge cutter is,and the greater the penetration depth is,which is advantageous.However,the target structure will be damaged when it is too large(e.g.,4.5 g·m^(-1)).Within 12 mm,when the cutting thickness of the target increases,the penetration depth increases.The lower the tensile strength is,the greater the penetration depth is,and the more conducive the penetration depth to the shaped charge cutting is.When the elongation(EL)increases to 12%,the collapse of the target is incomplete and the target cannot be separated.When the tensile strength of the Mg-Gd-Y-Zn alloy is less than 350 MPa,the EL is less than 6.5%,the cutting thickness is less than 12 mm,and the linear shaped charge cutting of the magnesium alloy can be achieved stably.展开更多
1 Scope This standard covers the definition, technical requirement, apparatus, specimen, test procedure, calculation and test report on permanent linear change of shaped insulating refractory products.
The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel,focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field.This st...The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel,focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field.This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport.By suspending nanoparticles of diverse shapes-platelets,blades,and spheres in a hybrid base fluid comprising cobalt ferrite,magnesium oxide,and graphene oxide,the study examines the influence of both small and large volume fraction values.The governing equations are converted into a dimensionless form.With suitable assumptions,the partial differential equations(PDEs)are simplified into ordinary differential equations(ODEs),which are then solved using an analyticalmethod.Theproposed solution is verified using a numerical approach with the BVP4C solver.The analysis yields detailed graphs that depict the behavior of key fluid flow parameters,such as velocity,temperature,concentration,skin friction,Nusselt number,and Sherwood number,within the tapered asymmetric channel.展开更多
A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction a...A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.展开更多
With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results sho...With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results showed that for twocore shielded cable, the coupling capacitance of trapezoid slots (asymmetric and symmetric) changed the most, followed by rectangular slots (asymmetric and symmetric), and the changes of wedge slots were the smallest, but the change tenden- cies were consistent. In addition, with the increase of slot width of different slots, the coupling capacitance of tow-cored shielded cable showed small change.展开更多
The human placenta nourishes the growing fetus during pregnancy. The newly developing field of placenta analysis seeks to understand relationships between the health of a placenta and the health of the baby. Previous ...The human placenta nourishes the growing fetus during pregnancy. The newly developing field of placenta analysis seeks to understand relationships between the health of a placenta and the health of the baby. Previous studies have shown that the median placental chorionic shape at term is round, and deviation from such prototypical shape is related to a decreased placental functional efficiency. In this study, we propose the use of a nearly-continuous shape descriptor termed signed deviation vector to systematically study the relationship between various maternal and fetal characteristics and the shape of the placental surface. The proposed shape descriptor measures the amount of deviation along with the direction of the deviation a placental shape has away from the shape of normality. Using Linear Discriminant Analysis, we can independently examine how much of the placental shape is affected by maternal, newborn, and placental characteristics. The results allow us to understand how significantly various maternal and fetal conditions affect the overall shape of the placenta growth. Though the current study is largely exploratory, the initial findings indicate significant relationships between shape of the placental surface and newborn’s birth weight as well as their gestational age.展开更多
In this paper we will show that if an approximation process {Ln}n∈N is shape- preserving relative to the cone of all k-times differentiable functions with non-negative k-th derivative on [0,1], and the operators Ln a...In this paper we will show that if an approximation process {Ln}n∈N is shape- preserving relative to the cone of all k-times differentiable functions with non-negative k-th derivative on [0,1], and the operators Ln are assumed to be of finite rank n, then the order of convergence of D^kLnf to D^kf cannot be better than n-2 even for the functions x^k, x^k+1, x^k+2 on any subset of [0,1 ] with positive measure. Taking into account this fact, we will be able to find some asymptotic estimates of linear relative n-width of sets of differentiable functions in the space LP[0, 1], p ∈ N.展开更多
Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The ...Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.展开更多
The objective of the present article is to find an optimal design of a fan inlet to reduce the amount of noise radiated to the far field from the system. Against the gradient-based optimization algorithms, we employ h...The objective of the present article is to find an optimal design of a fan inlet to reduce the amount of noise radiated to the far field from the system. Against the gradient-based optimization algorithms, we employ here a method based on measure theory which does not require any information of gradients and the differentiability of cost function.展开更多
In order to improve the linear recovery behavior, TiNi shape memory alloy springs were samariumed at 550°C for 4 hours with SmH3 as samarium source, in a vacuum furnace. The phase of samariumed layer was determin...In order to improve the linear recovery behavior, TiNi shape memory alloy springs were samariumed at 550°C for 4 hours with SmH3 as samarium source, in a vacuum furnace. The phase of samariumed layer was determined by X-ray diffractometer (XRD). The fracture surface of TiNi SMA spring was investigated by scanning electronic microscope (SEM). The experimental results indicate that a thick samariumed layer composed of NiSm intermetallics existed on the fracture surface. Additionally, a new idea of linear recovery behavior in shape memory alloy (SMA) has been proposed, and its properties have been defined. The reversion measurements show that the linear recovery properties of TiNi SMA were obviously improved. The temperature range of the linear reversion (Tw) was enlarged from 4°C to 8’C, The ratio of linear reversion was increased from 54% to 75%, the proportion of linear reversion (PL) was increased from 56% to 70%, and the proportion of non-linear reversion (Ps) was decreased from 44% to 10%, but the proportion of total reversion (PT) has a little decrease. These results were attributed to the strengthening effect of NiSm intermetallics.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(Grant Nos.2232024Y-01,LZB2023001)DHU Distinguished Young Professor Program+1 种基金National Natural Science Foundation of China(Grant No.52275478)AI-Enhanced Research Program of Shanghai Municipal Education Commission(Grant No.SMEC-AI-DHUY-05)。
文摘Shape prediction of deformable linear objects(DLO)plays critical roles in robotics,medical devices,aerospace,and manufacturing,especially in manipulating objects such as cables,wires,and fibers.Due to the inherent flexibility of DLO and their complex deformation behaviors,such as bending and torsion,it is challenging to predict their dynamic characteristics accurately.Although the traditional physical modeling method can simulate the complex deformation behavior of DLO,the calculation cost is high and it is difficult to meet the demand of real-time prediction.In addition,the scarcity of data resources also limits the prediction accuracy of existing models.To solve these problems,a method of fiber shape prediction based on a physical information graph neural network(PIGNN)is proposed in this paper.This method cleverly combines the powerful expressive power of graph neural networks with the strict constraints of physical laws.Specifically,we learn the initial deformation model of the fiber through graph neural networks(GNN)to provide a good initial estimate for the model,which helps alleviate the problem of data resource scarcity.During the training process,we incorporate the physical prior knowledge of the dynamic deformation of the fiber optics into the loss function as a constraint,which is then fed back to the network model.This ensures that the shape of the fiber optics gradually approaches the true target shape,effectively solving the complex nonlinear behavior prediction problem of deformable linear objects.Experimental results demonstrate that,compared to traditional methods,the proposed method significantly reduces execution time and prediction error when handling the complex deformations of deformable fibers.This showcases its potential application value and superiority in fiber manipulation.
文摘Based on the action mechanism of linear shaped charge( LSC ), penetration performance of LSC on rock was studied. The optimal standoff and the vertex angle of LSC were studied and determined by lab experiments. Through cutting sand-cement grout samples, the spacing interval of boreholes can approach 17.5 times of the bore-hole' s diameter, and the result of the directional expansion of crack is satisfactory. The result of field experiment indicates cutting effect is very good, the ruggedness in fracture plane is less than 50 mm, the rate of half-hole marks is nearly 100 % , and the crack inspection shows that there is no damage in the internal of the cutting part. All these suggest that the orientation fracture blasting with LSC is a good means in directional fracture controlled blasting and is worth popularizing widely.
基金Supported by the National Natural Science Foundation of China(81372358,81527801,51303140,and 81602489)the Natural Science Foundation of Hubei Province(2014CFA029)+1 种基金the Colleges of Hubei Province Outstanding Youth Science and Technology Innovation Team(T201305)the Applied Foundational Research Program of Wuhan Municipal Science and Technology Bureau(2015060101010056)
文摘This paper describes a simple method of generating concentration gradients with linear and parabolic profiles by using a Christmas tree-shaped microfluidic network.The microfluidic gradient generator consists of two parts:a Christmas tree-shaped network for gradient generation and a broad microchannel for detection.A two-dimensional model was built to analyze the flow field and the mass transfer in the microfluidic network.The simulating results show that a series of linear and parabolic gradient profiles were generated via adjusting relative flow rate ratios of the two source solutions(R_L^2≥0.995 and _PR^2≥0.999),which could match well with the experimental results(R_L^2≥0.987 and _PR^2≥0.996).The proposed method is promising for the generation of linear and parabolic concentration gradient profiles,with the potential in chemical and biological applications such as combinatorial chemistry synthesis,stem cell differentiation or cytotoxicity assays.
基金This work was supported by the National Natural Science Foundation of China (No. 20404007).
文摘Both four-ann star-shaped poly(ε-caprolactone) (4sPCL) and two-ann linear PCL (2LPCL) were synthesized and their inclusion complexation with α-cyclodextrin (α-CD) were studied. The inclusion complexes (ICs) formed between the PCL polymers and α-CD were characterized by ^1H-NMR, DSC, TGA, WAXD, and FT-1R, respectively. Both branch ann number and molecular weight of the PCL polymers have apparent effect on the stoichiometry (CL:CD, mol:mol) of these ICs. All these analytical results indicate that the branch arms of the PCL polymers are incorporated into the hydrophobic α-CD cavities and their original crystalline properties are completely suppressed. Moreover, the inclusion complexation between two-ann linear or four-ann star-shaped PCL polymers and α-CD not only enhances the thermal stability of the vip PCL polymers but also improves that of α-CD.
文摘In this paper, we want to make a new type linear piezoelectric motor by mode shape coating or effective electrode surface coating. The mode shape is derived from the mechanical boundary conditions of the linear piezoelectric motor. We only have access to the first three modes of formas, the effective electrode surface coating basis, as well as with the linear piezoelectric motor of normal shape do comparison. Next, we will inspect their gain or axial velocity through theoretical analysis, simulation and experiment. According to the results of the theoretical analysis, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much larger than the linear piezoelectric motors of normal shape. However, according to the results of simulation and experiments, we have found that the gain or axial velocity of the linear piezoelectric motors of mode shape is much greater than the linear piezoelectric motors of normal shape, which is about 1.2 to 1.4 times. The linear piezoelectric motor of mode shape 3 has the fastest axial velocity, which is about -48 mm/s and 48 mm/s under conditions of 180 Vp-p driving voltage, 21.2 kHz driving frequency (the third vibration modal), 25 gw loading and the position of loading or mass at x = 5 mm & 45 mm respectively. And its axial velocity is about 1.4 times the linear piezoelectric motor of normal shape under the same conditions. Overall, the mode shape coating helps to enhance the gain or axial velocity of the linear piezoelectric motor.
基金National Natural Science Foundation ofChina(No.5 973 10 3 0 )
文摘Based on the Brinson constitutive model of SMA, a piecewise linear model for the hysteresis loop of pseudo-elasticity is proposed and applied in the analysis of responses of an SMA-spring-mass system under initial velocity activation. The histories of displacement and velocity of the mass, and the response of stress of SMA are calculated with Brinson’s model and the piecewise linear model. The difference of results of the two models is not significant. The calculation with piecewise-linear model needs no iteration and is highly efficient.
基金the National Natural Science Foundation of China(No.U2037601)。
文摘The linear shaped charge cutting technology is an effective technology for aircraft separation.It can separate invalid components from aircrafts timely to achieve light-weight.Magnesium alloy is the lightest metal material,and can be used to cast effective light-weight components of an aircraft construction.However,the application study of the linear shaped charge cutting technology on magnesium alloy components is basically blank.In response to the demand for the linear separation of magnesium alloys,the Mg-12Gd-0.5Y-0.4Zn alloy is selected to carry out the target shaped charge cutting test.The effects of the shaped charge line density,cutting thickness,and mechanical properties on the cutting performance of the alloy are studied.The shaped charge cutting mechanism is analyzed through the notch structure.The results show that the linear shaped charge cutting performance is significantly affected by the penetration and the collapse.The higher the linear density is,the stronger the ability of the linear shaped charge cutter is,and the greater the penetration depth is,which is advantageous.However,the target structure will be damaged when it is too large(e.g.,4.5 g·m^(-1)).Within 12 mm,when the cutting thickness of the target increases,the penetration depth increases.The lower the tensile strength is,the greater the penetration depth is,and the more conducive the penetration depth to the shaped charge cutting is.When the elongation(EL)increases to 12%,the collapse of the target is incomplete and the target cannot be separated.When the tensile strength of the Mg-Gd-Y-Zn alloy is less than 350 MPa,the EL is less than 6.5%,the cutting thickness is less than 12 mm,and the linear shaped charge cutting of the magnesium alloy can be achieved stably.
文摘1 Scope This standard covers the definition, technical requirement, apparatus, specimen, test procedure, calculation and test report on permanent linear change of shaped insulating refractory products.
基金supported by the Government of the Basque Country,programs:Elkartek Grant No.DBaskIN ELKARTEK 25/28 and Grant No.:KK-2024/00035 and ITSAS-REM Grant No.:IT1514-22 funded by the High-Level Talent Research Start-up Project Funding of Henan Academy of Sciences(Project No.241819246).
文摘The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel,focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field.This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport.By suspending nanoparticles of diverse shapes-platelets,blades,and spheres in a hybrid base fluid comprising cobalt ferrite,magnesium oxide,and graphene oxide,the study examines the influence of both small and large volume fraction values.The governing equations are converted into a dimensionless form.With suitable assumptions,the partial differential equations(PDEs)are simplified into ordinary differential equations(ODEs),which are then solved using an analyticalmethod.Theproposed solution is verified using a numerical approach with the BVP4C solver.The analysis yields detailed graphs that depict the behavior of key fluid flow parameters,such as velocity,temperature,concentration,skin friction,Nusselt number,and Sherwood number,within the tapered asymmetric channel.
文摘A new type of linear ultrasonic motor with two degrees of freedom (DOF) motion is presented. The concept of the new typical motor is based on the combination of a longitudinal and two bending modes. The construction and the operational principle of motor are described, and the elliptical motion of the driving point of the actuator is proved. Meanwhile, a prototype linear motor is designed by using the finite element method (FEM) and is constructed for experiments. The vibration modes are tested with the laser doppler vibrometer (PSV-300F), and the experimental results prove that the design requirements on the mode shape of the actuator and nature frequency are satisfied. The test run of the motor indicates that the operational principle of the motor and the design results are correct, and the output properties are also tested.
基金Supported by the Science and Technology Program of the Education Department of Shaanxi Provincial Government(09JK378)the Key Scientific Research Fund of Shaanxi University of Technology(SLGKY12-02)~~
文摘With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results showed that for twocore shielded cable, the coupling capacitance of trapezoid slots (asymmetric and symmetric) changed the most, followed by rectangular slots (asymmetric and symmetric), and the changes of wedge slots were the smallest, but the change tenden- cies were consistent. In addition, with the increase of slot width of different slots, the coupling capacitance of tow-cored shielded cable showed small change.
文摘The human placenta nourishes the growing fetus during pregnancy. The newly developing field of placenta analysis seeks to understand relationships between the health of a placenta and the health of the baby. Previous studies have shown that the median placental chorionic shape at term is round, and deviation from such prototypical shape is related to a decreased placental functional efficiency. In this study, we propose the use of a nearly-continuous shape descriptor termed signed deviation vector to systematically study the relationship between various maternal and fetal characteristics and the shape of the placental surface. The proposed shape descriptor measures the amount of deviation along with the direction of the deviation a placental shape has away from the shape of normality. Using Linear Discriminant Analysis, we can independently examine how much of the placental shape is affected by maternal, newborn, and placental characteristics. The results allow us to understand how significantly various maternal and fetal conditions affect the overall shape of the placenta growth. Though the current study is largely exploratory, the initial findings indicate significant relationships between shape of the placental surface and newborn’s birth weight as well as their gestational age.
基金Supported by RFBR(grant10-01-00270)the president of the Russian Federation(NS-4383.2010.1)
文摘In this paper we will show that if an approximation process {Ln}n∈N is shape- preserving relative to the cone of all k-times differentiable functions with non-negative k-th derivative on [0,1], and the operators Ln are assumed to be of finite rank n, then the order of convergence of D^kLnf to D^kf cannot be better than n-2 even for the functions x^k, x^k+1, x^k+2 on any subset of [0,1 ] with positive measure. Taking into account this fact, we will be able to find some asymptotic estimates of linear relative n-width of sets of differentiable functions in the space LP[0, 1], p ∈ N.
文摘Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model.
文摘The objective of the present article is to find an optimal design of a fan inlet to reduce the amount of noise radiated to the far field from the system. Against the gradient-based optimization algorithms, we employ here a method based on measure theory which does not require any information of gradients and the differentiability of cost function.
基金supports from Jiangxi Provincial Natural Science Fund(CA200201002)
文摘In order to improve the linear recovery behavior, TiNi shape memory alloy springs were samariumed at 550°C for 4 hours with SmH3 as samarium source, in a vacuum furnace. The phase of samariumed layer was determined by X-ray diffractometer (XRD). The fracture surface of TiNi SMA spring was investigated by scanning electronic microscope (SEM). The experimental results indicate that a thick samariumed layer composed of NiSm intermetallics existed on the fracture surface. Additionally, a new idea of linear recovery behavior in shape memory alloy (SMA) has been proposed, and its properties have been defined. The reversion measurements show that the linear recovery properties of TiNi SMA were obviously improved. The temperature range of the linear reversion (Tw) was enlarged from 4°C to 8’C, The ratio of linear reversion was increased from 54% to 75%, the proportion of linear reversion (PL) was increased from 56% to 70%, and the proportion of non-linear reversion (Ps) was decreased from 44% to 10%, but the proportion of total reversion (PT) has a little decrease. These results were attributed to the strengthening effect of NiSm intermetallics.