Non-pneumatic wheels inherently offer explosion-proof advantages compared to pneumatic wheel.Our team innovatively proposed an“elastic ring-hinge group”type non-pneumatic mechanical elastic wheel(ME-Wheel).To analyz...Non-pneumatic wheels inherently offer explosion-proof advantages compared to pneumatic wheel.Our team innovatively proposed an“elastic ring-hinge group”type non-pneumatic mechanical elastic wheel(ME-Wheel).To analyze the gas flow characteristics around the ME-Wheel,this study analyzed the aerodynamic characteristics of the MEWheel for the first time by using CFD calculation method,and studied the influences of speed,steering angle,camber angle and hinge group on the aerodynamic characteristics of the wheel.Compared with camber angle,steering angle has a more significant effect on the aerodynamic characteristics of non-pneumatic mechanical elastic wheels in terms of lift and drag.Speed has no significant effect on the wheel drag coefficient and lift coefficient.The number of hinge groups has a significant effect on wheel aerodynamic characteristics.The deviations between the maximum and minimum values of drag,lift,drag coefficient,and lift coefficient are 6.06%,8.57%,6.05%,and 8.6%,respectively.This study addresses a critical gap in the design optimization of ME-Wheel,provides a theoretical basis for the aerodynamic optimization of ME-Wheel,and has strong practical significance for the commercial development of nonpneumatic mechanical elastic wheels.展开更多
Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel prepara...Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise.展开更多
The momentum wheel assumes a dominant role as an inertial actuator for satellite attitude control systems.Due to the effects of structural aging and external interference,the momentum wheel may experience the gradual ...The momentum wheel assumes a dominant role as an inertial actuator for satellite attitude control systems.Due to the effects of structural aging and external interference,the momentum wheel may experience the gradual emergence of irreversible faults.These fault features will become apparent in the telemetry signal transmitted by the momentum wheel.This paper introduces ADTWformer,a lightweight model for long-term prediction of time series,to analyze the time evolution trend and multi-dimensional data coupling mechanism of satellite momentum wheel faults.Moreover,the incorporation of the approximate Markov blanket with the maximum information coefficient presents a novel methodology for performing correlation analysis,providing significant perspectives from a data-centric standpoint.Ultimately,the creation of an adaptive alarm mechanism allows for the successful attainment of the momentum wheel fault warning by detecting the changes in the health status curves.The analysis methodology outlined in this article has exhibited positive results in identifying instances of satellite momentum wheel failure in two scenarios,thereby showcasing considerable promise for large-scale applications.展开更多
The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This ...The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardhess and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 ℃ is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm^3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the bum-free and crack-free ground surface.展开更多
A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is stu...A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is studied. Experimental results show that when continuous dry grinding is employed, grits of the brazed diamond grinding wheel fail mainly in attritious wear and fracture modes and no pull-out ones are found in conventional electroplated and sintered diamond wheels. It indicates the strong retention of brazing alloy to diamond grits and the longer service life of the wheel. In addition, the ground surface has good roughness. The theoretical surface roughness agrees well with experimental results.展开更多
Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirem...Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirement of blade tenon of aero-engine. Residual stresses, surface roughness, microstructure and microhardness are measured on ground surfaces of the specimen, which are all compared with that ground with vitrified CBN wheels. Under all the circumstances, compressive residual stress is obtained and the depth of the machining affected zone is found to be less than 40 μm. No phase transformation is observed at depths of up to 100 lain below the surface, though plastic deformation is visible in the process of grain refinement. The residual stress and microhardness of specimens ground with brazed CBN wheels are observed to be lower than those ground with vitrified ones. The arithmetic mean roughness (Ra) values obtained are all below 0.8μm.展开更多
The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the t...The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the thixo-forged A356 aluminum alloy wheels were investigated. The results show that the A356 aluminum alloy billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃. When the billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the billet can be easily thixo-forged into wheels. The tensile strength and elongation of thixo-forged wheels with T6 heat treatment are 327.6 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.展开更多
The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding fo...The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.展开更多
In order to enhance the accuracy and overcome the limitation of representing the vehicular velocity with non driving wheel speed signals, which is commonly used in researching on automotive dynamic control systems at...In order to enhance the accuracy and overcome the limitation of representing the vehicular velocity with non driving wheel speed signals, which is commonly used in researching on automotive dynamic control systems at present, the dynamic and kinematics models of running vehicles and wheels are established. The concept that expresses vehicle velocity using only the driving wheel speed information with adjustable weight factors is described and an algorithm is proposed. A Matlab program with the algorithm embedded is made to simulate the vehicle’s accelerating under different road conditions, and it’s simulation results coincide well with the experimental results, which demonstrates the validity of the algorithm.展开更多
A state-of-the-art review on monolayer electroplated and brazed cubic boron nitride(CBN) superabrasive wheels for grinding metallic materials has been provided in this article. The fabrication techniques and mechani...A state-of-the-art review on monolayer electroplated and brazed cubic boron nitride(CBN) superabrasive wheels for grinding metallic materials has been provided in this article. The fabrication techniques and mechanisms of the monolayer CBN wheels are discussed. Grain distribution, wheel dressing, wear behavior, and wheel performance are analyzed in detail. Sample applications of monolayer CBN wheel for grinding steels, titanium alloys, and nickel-based superalloys are also provided. Finally, this article highlights opportunities for further investigation of monolayer CBN grinding wheels.展开更多
This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance...This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.展开更多
This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CB...This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CBN wheels was conducted,mainly involving abrasive wheel wear behavior and maximum material removal rate below surface burn limit.It was found that the diamond wheel would produce much better grinding results including lower wheel wear rate and higher maximum material removal rate.Then the surface integrity obtained at different level of material removal rate was characterized with the utilization of the diamond wheel.The poor ductility of thisγ-TiAl intermetallic material was found to have a marginal effect on the surface integrity,as no severe surface defects such as material pullout were generated during the stable wheel wear stage.For the involved operating parameters,a deformation layer was produced with~10μm or more in thickness depending on the material removal rate used.Meanwhile,a work-hardened layer extending to more than 100μm was produced with a maximum microhardness of above 520 HV0.05(bulk value 360 HV0.05).The residual stress remained compressive,with a value of above-100 MPa and even up to-500 MPa for an elevated material removal rate.Shearing chip was the main chip type,indicating good wheel sharpness in the grinding process.展开更多
In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the singl...In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.展开更多
The recent research and development of forged magnesium road wheel were reviewed.Methods of flow-forming,spin forging of manufacturing a forged magnesium alloy wheel were introduced.A new extrusion method was investig...The recent research and development of forged magnesium road wheel were reviewed.Methods of flow-forming,spin forging of manufacturing a forged magnesium alloy wheel were introduced.A new extrusion method was investigated especially. Extrusion from hollow billet was proposed in order to enhance the strength of spoke portion and reduce the maximum forming load. By means of the developed technique,the one-piece Mg wheels were produced successfully by extrusion from AZ80+alloy.At the same time,the existing problems on the research and development of forged magnesium road wheel were analyzed.The impact testing,radial fatigue testing and bending fatigue testing results show that AZ80+wheel can meet application requirement in automobile industry.展开更多
Polygonisation is a common nonuniform wear phenomenon occurring in railway vehicle wheels and has a severe impact on the vehicle–track system,ride comfort,and lineside residents.This paper first summarizes periodic d...Polygonisation is a common nonuniform wear phenomenon occurring in railway vehicle wheels and has a severe impact on the vehicle–track system,ride comfort,and lineside residents.This paper first summarizes periodic defects of the wheels,including wheel polygonisation and wheel corrugation,occurring in railways worldwide.Thereafter,the effects of wheel polygonisation on the wheel–rail interaction,noise and vibration,and fatigue failure of the vehicle and track components are reviewed.Based on the different causes,the formation mechanisms of periodic wheel defects are classified into three categories:(1)initial defects of wheels,(2)natural vibration of the vehicle–track system,and(3)thermoelastic instability.In addition,the simulation methods of wheel polygonisation evolution and countermeasures to mitigate wheel polygonisation are presented.Emphasis is given to the characteristics,effects,causes,and solutions of wheel polygonisation in metro vehicles,locomotives,and highspeed trains in China.Finally,the guidance is provided on further understanding the formation mechanisms,monitoring technology,and maintenance criterion of wheel polygonisation.展开更多
An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and extern...An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.展开更多
The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power...The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power requirement of the devices on the spacecraft.The roll/yaw motion is controlled by pitch magnetic dipole moment. The torque-based control law ofthe wheels is designed, so that the desired pitch control torque is provided and the operation ofcharging/discharging energy is carried out based on the given power. System singularity in thecontrol law of wheels is fully avoided by keeping the wheels counter-spinning. A power managementscheme using kinetic energy feedback is proposed to keep energy balance, which can avoid wheelsaturation caused by superfluous energy. The minimum moment of inertia of the wheels is limited bythe maximum bias angular momentum and the minimum energy, such constrains are analyzed incombination with the geometrical method. Numerical simulation results are presented to demonstratethe effectiveness of the control scheme.展开更多
The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo...The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃ When the round billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.展开更多
As an important green manufacturing process,dry grinding has problems such as high grinding temperature and insufficient cooling capacity.Aiming at the problems of sticking and burns in dry grinding of titanium alloys...As an important green manufacturing process,dry grinding has problems such as high grinding temperature and insufficient cooling capacity.Aiming at the problems of sticking and burns in dry grinding of titanium alloys,grinding performance evaluation of molybdenum disulfide(MoS_(2))solid lubricant coated brazed cubic boron carbide(CBN)grinding wheel(MoS_(2)-coated CBN wheel)in dry grinding titanium alloys was carried out.The lubrication mechanism of MoS_(2)in the grinding process is analyzed,and the MoS_(2)-coated CBN wheel is prepared.The results show that the MoS_(2)solid lubricant can form a lubricating film on the ground surface and reduce the friction coefficient and grinding force.Within the experimental parameters,normal grinding force decreased by 42.5%,and tangential grinding force decreased by 28.1%.MoS_(2)lubricant can effectively improve the heat dissipation effect of titanium alloy grinding arc area.Compared with common CBN grinding wheel,MoS_(2)-coated CBN wheel has lower grinding temperature.When the grinding depth reaches 20μm,the grinding temperature decreased by 30.5%.The wear of CBN grains of grinding wheel were analyzed by mathematical statistical method.MoS_(2)lubricating coating can essentially decrease the wear of grains,reduce the adhesion of titanium alloy chip,prolong the service life of grinding wheel,and help to enhance the surface quality of workpiece.This research provides high-quality and efficient technical support for titanium alloy grinding.展开更多
In order to improve the curving performance of the conventional wheelset in sharp curves and resolve the steering ability problem of the independently rotating wheel in large radius curves and tangent lines, a differe...In order to improve the curving performance of the conventional wheelset in sharp curves and resolve the steering ability problem of the independently rotating wheel in large radius curves and tangent lines, a differential cou- pling wheelset (DCW) was developed in this work. The DCW was composed of two independently rotating wheels (IRWs) coupled by a clutch-type limited slip differential. The differential contains a static pre-stress clutch, which could lock both sides of IRWs of the DCW to ensure a good steering performance in curves with large radius and tangent track. In contrast, the clutch could unlock the two IRWs of the DCW in a sharp curve to endue it with the characteristic of an IRW, so that the vehicles can go through the tight curve smoothly. To study the dynamic performance of the DCW, a multi-body dynamic model of single bogie with DCWs was established. The self-centering capability, hunting stability, and self-steering performance on a curved track were analyzed and then compared with those of the conventional wheelset and IRW. Finally, the effect of coupling parameters of the DCW on the dynamic performance was investigated.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52472411,52272397)the Key Research&Development and Achievement Transformation Program of Wuhu(Grant No.2023YF010)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX25_0566).
文摘Non-pneumatic wheels inherently offer explosion-proof advantages compared to pneumatic wheel.Our team innovatively proposed an“elastic ring-hinge group”type non-pneumatic mechanical elastic wheel(ME-Wheel).To analyze the gas flow characteristics around the ME-Wheel,this study analyzed the aerodynamic characteristics of the MEWheel for the first time by using CFD calculation method,and studied the influences of speed,steering angle,camber angle and hinge group on the aerodynamic characteristics of the wheel.Compared with camber angle,steering angle has a more significant effect on the aerodynamic characteristics of non-pneumatic mechanical elastic wheels in terms of lift and drag.Speed has no significant effect on the wheel drag coefficient and lift coefficient.The number of hinge groups has a significant effect on wheel aerodynamic characteristics.The deviations between the maximum and minimum values of drag,lift,drag coefficient,and lift coefficient are 6.06%,8.57%,6.05%,and 8.6%,respectively.This study addresses a critical gap in the design optimization of ME-Wheel,provides a theoretical basis for the aerodynamic optimization of ME-Wheel,and has strong practical significance for the commercial development of nonpneumatic mechanical elastic wheels.
基金Supported by National Natural Science Foundation of China(Grant No.52175401)Hunan Provincial Postgraduate Scientific Research Innovation Project(Grant No.QL20230244)+1 种基金Enterprise Innovation and Development Joint Program of National Natural Science Foundation of China(Grant No.U20B2032)Hunan Provincial Science and Technology Innovation Program(Grant No.2022RC1050).
文摘Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise.
基金supported by the Science Center Program of National Natural Science Foundation of China(62188101)the National Natural Science Foundation of China(61833009,61690212,51875119)+1 种基金the Heilongjiang Touyan Teamthe Guangdong Major Project of Basic and Applied Basic Research(2019B030302001)
文摘The momentum wheel assumes a dominant role as an inertial actuator for satellite attitude control systems.Due to the effects of structural aging and external interference,the momentum wheel may experience the gradual emergence of irreversible faults.These fault features will become apparent in the telemetry signal transmitted by the momentum wheel.This paper introduces ADTWformer,a lightweight model for long-term prediction of time series,to analyze the time evolution trend and multi-dimensional data coupling mechanism of satellite momentum wheel faults.Moreover,the incorporation of the approximate Markov blanket with the maximum information coefficient presents a novel methodology for performing correlation analysis,providing significant perspectives from a data-centric standpoint.Ultimately,the creation of an adaptive alarm mechanism allows for the successful attainment of the momentum wheel fault warning by detecting the changes in the health status curves.The analysis methodology outlined in this article has exhibited positive results in identifying instances of satellite momentum wheel failure in two scenarios,thereby showcasing considerable promise for large-scale applications.
基金National Basic Research Program of China (2009CB724403)Program for Changjiang Scholars and Innovative Research Team in University (IRT0837)Program for New Century Excellent Talents in University from Ministry of Education of China (NCET-07-0435)
文摘The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardhess and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 ℃ is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm^3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the bum-free and crack-free ground surface.
文摘A new cup-type grinding wheel of the brazed monolayer diamond is developed with a defined grain pattern on the wheel surface. Grinding performance of the brazed wheel in the surface grinding of cemented carbide is studied. Experimental results show that when continuous dry grinding is employed, grits of the brazed diamond grinding wheel fail mainly in attritious wear and fracture modes and no pull-out ones are found in conventional electroplated and sintered diamond wheels. It indicates the strong retention of brazing alloy to diamond grits and the longer service life of the wheel. In addition, the ground surface has good roughness. The theoretical surface roughness agrees well with experimental results.
基金National Fundamental Research Program of China (2009CB724403)Program for New Century Excellent Talents in University from Ministry of Education of China (NCET-07-0435)
文摘Titanium alloy tenon is creep feed ground with monolayer brazed cubic boron nitride (CBN) shaped wheels. The dimension accuracy of the tenon is assessed and the results indicate that it completely meets the requirement of blade tenon of aero-engine. Residual stresses, surface roughness, microstructure and microhardness are measured on ground surfaces of the specimen, which are all compared with that ground with vitrified CBN wheels. Under all the circumstances, compressive residual stress is obtained and the depth of the machining affected zone is found to be less than 40 μm. No phase transformation is observed at depths of up to 100 lain below the surface, though plastic deformation is visible in the process of grain refinement. The residual stress and microhardness of specimens ground with brazed CBN wheels are observed to be lower than those ground with vitrified ones. The arithmetic mean roughness (Ra) values obtained are all below 0.8μm.
基金Project(2012B090600051)supported by the Guangdong Provincial Department of Science and Technology,ChinaProject(2013EG115006)supported by the Special Program for Technology Development from the Ministry of Science and Technology of China
文摘The A356 aluminum alloy wheels were prepared by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of the thixo-forged A356 aluminum alloy wheels were investigated. The results show that the A356 aluminum alloy billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃. When the billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the billet can be easily thixo-forged into wheels. The tensile strength and elongation of thixo-forged wheels with T6 heat treatment are 327.6 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2006723)New Century Ex-cellent Talents in University from Ministry of Education of China (NCET-07-0435)~~
文摘The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.
文摘In order to enhance the accuracy and overcome the limitation of representing the vehicular velocity with non driving wheel speed signals, which is commonly used in researching on automotive dynamic control systems at present, the dynamic and kinematics models of running vehicles and wheels are established. The concept that expresses vehicle velocity using only the driving wheel speed information with adjustable weight factors is described and an algorithm is proposed. A Matlab program with the algorithm embedded is made to simulate the vehicle’s accelerating under different road conditions, and it’s simulation results coincide well with the experimental results, which demonstrates the validity of the algorithm.
基金financial support for this work by the National Natural Science Foundation of China (Nos. 51235004 and 51375235)the Fundamental Research Funds for the Central Universities (Nos. NE2014103 and NZ2016107)
文摘A state-of-the-art review on monolayer electroplated and brazed cubic boron nitride(CBN) superabrasive wheels for grinding metallic materials has been provided in this article. The fabrication techniques and mechanisms of the monolayer CBN wheels are discussed. Grain distribution, wheel dressing, wear behavior, and wheel performance are analyzed in detail. Sample applications of monolayer CBN wheel for grinding steels, titanium alloys, and nickel-based superalloys are also provided. Finally, this article highlights opportunities for further investigation of monolayer CBN grinding wheels.
基金Project supported by the National Natural Science Foundation of China (No. U 1134202)
文摘This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.
基金the National Natural Science Foundation of China(Nos.51921003 and 51775275)the Major Special Projects of Aero-engine and Gas Turbine of China(2017-VII-0002-0095)+1 种基金the Six Talents Summit Project in Jiangsu Province of China(No.JXQC-002)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX180256)。
文摘This paper evaluates the performance of creep feed grindingγ-TiAl intermetallic(Ti-45 Al-2 Mn-2 Nb)using electroplated diamond wheels.Firstly,a comparative analysis with the grinding results by using electroplated CBN wheels was conducted,mainly involving abrasive wheel wear behavior and maximum material removal rate below surface burn limit.It was found that the diamond wheel would produce much better grinding results including lower wheel wear rate and higher maximum material removal rate.Then the surface integrity obtained at different level of material removal rate was characterized with the utilization of the diamond wheel.The poor ductility of thisγ-TiAl intermetallic material was found to have a marginal effect on the surface integrity,as no severe surface defects such as material pullout were generated during the stable wheel wear stage.For the involved operating parameters,a deformation layer was produced with~10μm or more in thickness depending on the material removal rate used.Meanwhile,a work-hardened layer extending to more than 100μm was produced with a maximum microhardness of above 520 HV0.05(bulk value 360 HV0.05).The residual stress remained compressive,with a value of above-100 MPa and even up to-500 MPa for an elevated material removal rate.Shearing chip was the main chip type,indicating good wheel sharpness in the grinding process.
基金the financial support for this work by the National Natural Science Foundation of China (No.51235004 and No.51375235)the Fundamental Research Funds for the Central Universities (No.NE2014103)the Science and Technology Supporting Program of Jiangsu Province (No.BE2013109 and No.BY2014003-008)
文摘In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.
基金Project(50735005)supported by the National Natural Science Foundation of China
文摘The recent research and development of forged magnesium road wheel were reviewed.Methods of flow-forming,spin forging of manufacturing a forged magnesium alloy wheel were introduced.A new extrusion method was investigated especially. Extrusion from hollow billet was proposed in order to enhance the strength of spoke portion and reduce the maximum forming load. By means of the developed technique,the one-piece Mg wheels were produced successfully by extrusion from AZ80+alloy.At the same time,the existing problems on the research and development of forged magnesium road wheel were analyzed.The impact testing,radial fatigue testing and bending fatigue testing results show that AZ80+wheel can meet application requirement in automobile industry.
基金the National Natural Science Foundation of China(Grant Nos.51875484,U1734201,51805450,51775455,U1434201 and 51475390)the Science and Technology Program of Sichuan Province of China(Grant No.2020YFQ0024)+1 种基金the Scientific Research Foundation of the State Key Laboratory of Traction Power of Southwest Jiaotong University(Grant Nos.2020TPL-T03 and 2020TPL-T12)China Postdoctoral Science Foundation(Grant No.2020M673281).
文摘Polygonisation is a common nonuniform wear phenomenon occurring in railway vehicle wheels and has a severe impact on the vehicle–track system,ride comfort,and lineside residents.This paper first summarizes periodic defects of the wheels,including wheel polygonisation and wheel corrugation,occurring in railways worldwide.Thereafter,the effects of wheel polygonisation on the wheel–rail interaction,noise and vibration,and fatigue failure of the vehicle and track components are reviewed.Based on the different causes,the formation mechanisms of periodic wheel defects are classified into three categories:(1)initial defects of wheels,(2)natural vibration of the vehicle–track system,and(3)thermoelastic instability.In addition,the simulation methods of wheel polygonisation evolution and countermeasures to mitigate wheel polygonisation are presented.Emphasis is given to the characteristics,effects,causes,and solutions of wheel polygonisation in metro vehicles,locomotives,and highspeed trains in China.Finally,the guidance is provided on further understanding the formation mechanisms,monitoring technology,and maintenance criterion of wheel polygonisation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60674101)the Research Fund for the Doctoral Program of Higher Educa-tion of China(Grant No.20050213010)
文摘An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.
文摘The integrated power and attitude control for a bias momentum attitudecontrol system is investigated. A pair of counter-spinning wheels is used to provide the biasangular momentum and store/ discharge energy for power requirement of the devices on the spacecraft.The roll/yaw motion is controlled by pitch magnetic dipole moment. The torque-based control law ofthe wheels is designed, so that the desired pitch control torque is provided and the operation ofcharging/discharging energy is carried out based on the given power. System singularity in thecontrol law of wheels is fully avoided by keeping the wheels counter-spinning. A power managementscheme using kinetic energy feedback is proposed to keep energy balance, which can avoid wheelsaturation caused by superfluous energy. The minimum moment of inertia of the wheels is limited bythe maximum bias angular momentum and the minimum energy, such constrains are analyzed incombination with the geometrical method. Numerical simulation results are presented to demonstratethe effectiveness of the control scheme.
基金financially supported by the Science and Technology Innovation Foundation of Guangzhou Research Institute of Non-ferrous Metals(2009A10)the Guangdong Province Cooperation Project of Industry,Education and Academy(2012B090600051)
文摘The A356 aluminum alloy wheels were produced by thixo-forging combined with a low superheat casting process. The as-cast microstructure, microstructure evolution during reheating and the mechanical properties of thixo-forged wheels made from the A356 aluminum alloy were studied. The results show that the A356 aluminum alloy round billet with fine, uniform and non-dendritic grains can be obtained when the melt is cast at 635 ℃ When the round billet is reheated at 600 ℃ for 60 min, the non-dendritic grains are changed into spherical ones and the round billet can be easily thixo-forged into wheels. The tensile strength, yield strength and elongation of the thixo-forged wheels with T6 heat treatment are 327.6 MPa, 228.3 MPa and 7.8%, respectively, which are higher than those of a cast wheel. It is suggested that the thixo-forging combined with the low superheat casting process is an effective technique to produce aluminum alloy wheels with high mechanical properties.
基金Supported by National Natural Science Foundation of China(Grant Nos.92160301,92060203,52175415,52205475)Science Center for Gas Turbine Project of China(Grant Nos.P2022-AB-IV-002-001,P2023-B-IV-003-001)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20210295)Graduate Research and Innovation Projects in Jiangsu Province of China(Grant No.KYCX22_0339).
文摘As an important green manufacturing process,dry grinding has problems such as high grinding temperature and insufficient cooling capacity.Aiming at the problems of sticking and burns in dry grinding of titanium alloys,grinding performance evaluation of molybdenum disulfide(MoS_(2))solid lubricant coated brazed cubic boron carbide(CBN)grinding wheel(MoS_(2)-coated CBN wheel)in dry grinding titanium alloys was carried out.The lubrication mechanism of MoS_(2)in the grinding process is analyzed,and the MoS_(2)-coated CBN wheel is prepared.The results show that the MoS_(2)solid lubricant can form a lubricating film on the ground surface and reduce the friction coefficient and grinding force.Within the experimental parameters,normal grinding force decreased by 42.5%,and tangential grinding force decreased by 28.1%.MoS_(2)lubricant can effectively improve the heat dissipation effect of titanium alloy grinding arc area.Compared with common CBN grinding wheel,MoS_(2)-coated CBN wheel has lower grinding temperature.When the grinding depth reaches 20μm,the grinding temperature decreased by 30.5%.The wear of CBN grains of grinding wheel were analyzed by mathematical statistical method.MoS_(2)lubricating coating can essentially decrease the wear of grains,reduce the adhesion of titanium alloy chip,prolong the service life of grinding wheel,and help to enhance the surface quality of workpiece.This research provides high-quality and efficient technical support for titanium alloy grinding.
基金supported by the National Key Technology R&D Program of China (No. 2009BAG12A02)the National Basic Research Program of China (No. 2011CB711106)+2 种基金the Program for Innovative Research Team in University (No. IRT1178)the Program for New Century Excellent Talents in University (No. NCET-10-0664)the National Key Technology R&D Program (No. 2009BAG12A01)
文摘In order to improve the curving performance of the conventional wheelset in sharp curves and resolve the steering ability problem of the independently rotating wheel in large radius curves and tangent lines, a differential cou- pling wheelset (DCW) was developed in this work. The DCW was composed of two independently rotating wheels (IRWs) coupled by a clutch-type limited slip differential. The differential contains a static pre-stress clutch, which could lock both sides of IRWs of the DCW to ensure a good steering performance in curves with large radius and tangent track. In contrast, the clutch could unlock the two IRWs of the DCW in a sharp curve to endue it with the characteristic of an IRW, so that the vehicles can go through the tight curve smoothly. To study the dynamic performance of the DCW, a multi-body dynamic model of single bogie with DCWs was established. The self-centering capability, hunting stability, and self-steering performance on a curved track were analyzed and then compared with those of the conventional wheelset and IRW. Finally, the effect of coupling parameters of the DCW on the dynamic performance was investigated.