The wheel-rail relationship in turnout is more complicated than that in ordinary track. Profile wear and machining errors of the wheelset cause deviations Of the rolling radius on different wheels. Therefore, wheelset...The wheel-rail relationship in turnout is more complicated than that in ordinary track. Profile wear and machining errors of the wheelset cause deviations Of the rolling radius on different wheels. Therefore, wheelsets move to the direction of smaller diameter wheels in search of a new stable state and to change the condition before entering the turnout. Thc main aim of the present work is to examine the wheel-turnout rail dynamic interaction combined with the static contact behaviour. Calculations are performed on a high-speed vehicle CRH2 and the No. 12 turnout of the passenger dedicated line. The wheel-turnout contac! geometric relationship and normal contact behaviour under wheel diameter difference are assessed by the trace principle and finite element method. A high-speed vehicle-turnout coupling dynamic model is established based on SIMPACK software to analyse the wheel-rail dynamic interaction, riding comfort, and wear. Both the wheel diameter amplitudes and distribution patterns are accounted for. The simulation shows that wheel diameter difference can greatly disturb the positions' variation of wheel-rail contact points and affect the normal contact behaviour on switch rails by changing the load transition position. The effect of wheel diameter diffierence on wheel-turnout rail dynamic interaction can be divided into three according to its amplitude: when the wheel diameter difference is within 0-1.5 mm, the wheel flange comes into contact with the switch rail in advance, causing a rapidly increased lateral wheel-rail force; when it is within 1.5 2.5 mm, trains are subject to instability under equivalent in-phase wheel diameter difference; when it is larger than 2.5 mm, the continuous flange-switch rail contact helps strengthen the vehicle stability, but increases the wheel-rail wear. It is recommended to control the wheel diameter difference to within 2.5 mm but limit it to 2 mm if it is distributed in-phase.展开更多
The wheel diameter difference would worsen the dynamic performance and affect the safety of the rail vehicle.Therefore,it is necessary to detect wheel diameter difference while the train is operating.However,several e...The wheel diameter difference would worsen the dynamic performance and affect the safety of the rail vehicle.Therefore,it is necessary to detect wheel diameter difference while the train is operating.However,several existing detection methods can’t accurately detect and diagnose the wheel diameter difference under highspeed running environment.In this study,a new method of detecting wheel diameter difference was proposed for high speed rail vehicle.The wheel diameter difference would be diagnosed by the amplitude and frequency of vibration impact on the axle box.Firstly,the dynamic model with varying wheel diameters was established in SIMPACK,and LMA tread was used in high-speed rail vehicles.Then,the simulation results of rail vehicle dynamic performance were compared under different wheel diameter differences.After that,the relationship between axle box vibration and wheel diameter difference was used to demonstrate the feasibility of this detection technology.Finally,comparing and analyzing the simulation results of vibration obtained by matching treads with different wheel diameters,it shows that by increasing the wheel diameter difference,the longitudinal and lateral impacts on axle boxes increase asymmetrically,and the amplitude and the frequency become more evident.Therefore,this paper presents a technical scheme of online measuring wheel diameter difference by monitoring the vibration of the axle box.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 51425804, U 1334203, 51608459, and 51378439) and the China Postdoctoral Science Foundation (No. 2016M590898)
文摘The wheel-rail relationship in turnout is more complicated than that in ordinary track. Profile wear and machining errors of the wheelset cause deviations Of the rolling radius on different wheels. Therefore, wheelsets move to the direction of smaller diameter wheels in search of a new stable state and to change the condition before entering the turnout. Thc main aim of the present work is to examine the wheel-turnout rail dynamic interaction combined with the static contact behaviour. Calculations are performed on a high-speed vehicle CRH2 and the No. 12 turnout of the passenger dedicated line. The wheel-turnout contac! geometric relationship and normal contact behaviour under wheel diameter difference are assessed by the trace principle and finite element method. A high-speed vehicle-turnout coupling dynamic model is established based on SIMPACK software to analyse the wheel-rail dynamic interaction, riding comfort, and wear. Both the wheel diameter amplitudes and distribution patterns are accounted for. The simulation shows that wheel diameter difference can greatly disturb the positions' variation of wheel-rail contact points and affect the normal contact behaviour on switch rails by changing the load transition position. The effect of wheel diameter diffierence on wheel-turnout rail dynamic interaction can be divided into three according to its amplitude: when the wheel diameter difference is within 0-1.5 mm, the wheel flange comes into contact with the switch rail in advance, causing a rapidly increased lateral wheel-rail force; when it is within 1.5 2.5 mm, trains are subject to instability under equivalent in-phase wheel diameter difference; when it is larger than 2.5 mm, the continuous flange-switch rail contact helps strengthen the vehicle stability, but increases the wheel-rail wear. It is recommended to control the wheel diameter difference to within 2.5 mm but limit it to 2 mm if it is distributed in-phase.
基金the Local Capacity Building Project of Shanghai Municipal Science and Technology Commission(No.17090503500)the Young Teachers Training Funding Scheme of Shanghai Colleges and Universities(No.ZZZZyyx16023)。
文摘The wheel diameter difference would worsen the dynamic performance and affect the safety of the rail vehicle.Therefore,it is necessary to detect wheel diameter difference while the train is operating.However,several existing detection methods can’t accurately detect and diagnose the wheel diameter difference under highspeed running environment.In this study,a new method of detecting wheel diameter difference was proposed for high speed rail vehicle.The wheel diameter difference would be diagnosed by the amplitude and frequency of vibration impact on the axle box.Firstly,the dynamic model with varying wheel diameters was established in SIMPACK,and LMA tread was used in high-speed rail vehicles.Then,the simulation results of rail vehicle dynamic performance were compared under different wheel diameter differences.After that,the relationship between axle box vibration and wheel diameter difference was used to demonstrate the feasibility of this detection technology.Finally,comparing and analyzing the simulation results of vibration obtained by matching treads with different wheel diameters,it shows that by increasing the wheel diameter difference,the longitudinal and lateral impacts on axle boxes increase asymmetrically,and the amplitude and the frequency become more evident.Therefore,this paper presents a technical scheme of online measuring wheel diameter difference by monitoring the vibration of the axle box.