期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
Swarm-Based Extreme Learning Machine Models for Global Optimization
1
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
在线阅读 下载PDF
Extreme learning with chemical reaction optimization for stock volatility prediction 被引量:2
2
作者 Sarat Chandra Nayak Bijan Bihari Misra 《Financial Innovation》 2020年第1期290-312,共23页
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti... Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting. 展开更多
关键词 extreme learning machine Single layer feed-forward network Artificial chemical reaction optimization Stock volatility prediction Financial time series forecasting Artificial neural network Genetic algorithm Particle swarm optimization
在线阅读 下载PDF
A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19 被引量:1
3
作者 Ahmed Reda Sherif Barakat Amira Rezk 《Computers, Materials & Continua》 SCIE EI 2022年第1期1381-1399,共19页
Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need... Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases. 展开更多
关键词 Butterfly optimization algorithm(BOA) covid-19 chest X-ray images convolutional neural network(CNN) extreme learning machine(ELM) feature selection
在线阅读 下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
4
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent Neural Network(RNN) whale optimization algorithm(WOA) CYBERSECURITY machine learning optimization
在线阅读 下载PDF
State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine 被引量:3
5
作者 Kui Chen Jiali Li +5 位作者 Kai Liu Changshan Bai Jiamin Zhu Guoqiang Gao Guangning Wu Salah Laghrouche 《Green Energy and Intelligent Transportation》 2024年第1期46-54,共9页
Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lith... Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%. 展开更多
关键词 Lithium-ion battery State of health estimation Grey relation analysis method Particle swarm optimization algorithm extreme learning machine
原文传递
Optimal Kernel-based Extreme Learning and Multi-objective Function-aided Task Scheduling for Solving Load Balancing Problems in Cloud Environment
6
作者 Ravi Gugulothu Vijaya Saradhi Thommandru Suneetha Bulla 《Journal of Systems Science and Systems Engineering》 2025年第4期385-409,共25页
Workload balancing in cloud computing is not yet resolved,particularly considering Infrastructure as a Service(IaaS)in the cloud network.The problem of being underloaded or overloaded should not occur at the time of t... Workload balancing in cloud computing is not yet resolved,particularly considering Infrastructure as a Service(IaaS)in the cloud network.The problem of being underloaded or overloaded should not occur at the time of the server or host accessing the cloud which may lead to create system crash problem.Thus,to resolve these existing problems,an efficient task scheduling algorithm is required for distributing the tasks over the entire feasible resources,which is termed load balancing.The load balancing approach assures that the entire Virtual Machines(VMs)are utilized appropriately.So,it is highly essential to develop a load-balancing model in a cloud environment based on machine learning and optimization strategies.Here,the computing and networking data is utilized for the analysis to observe the traffic as well as performance patterns.The acquired data is offered to the machine learning decision to select the right server by predicting the performance effectively by employing an Optimal Kernel-based Extreme Learning Machine(OK-ELM)and their parameter is tuned by the developed hybrid approach Population Size-based Mud Ring Tunicate Swarm Algorithm(PS-MRTSA).Further,effective scheduling is performed to resolve the load balancing issues by employing the developed model MR-TSA.Here,the developed approach effectively resolves the multi-objective constraints such as Response time,Resource cost,and energy consumption.Thus,the recommended load balancing model securesan enhanced performance rate than the traditional approaches over several experimental analyses. 展开更多
关键词 Cloud environment load balancing problem optimal kernel-based extreme learning machine population size-based mud ring tunicate swarm algorithm multi-objective function
原文传递
Identification of Pulmonary Hypertension Animal Models Using a New Evolutionary Machine Learning Framework Based on Blood Routine Indicators
7
作者 Jiao Hu Shushu Lv +5 位作者 Tao Zhou Huiling Chen Lei Xiao Xiaoying Huang Liangxing Wang Peiliang Wu 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期762-781,共20页
Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study... Pulmonary Hypertension(PH)is a global health problem that affects about 1%of the global population.Animal models of PH play a vital role in unraveling the pathophysiological mechanisms of the disease.The present study proposes a Kernel Extreme Learning Machine(KELM)model based on an improved Whale Optimization Algorithm(WOA)for predicting PH mouse models.The experimental results showed that the selected blood indicators,including Haemoglobin(HGB),Hematocrit(HCT),Mean,Platelet Volume(MPV),Platelet distribution width(PDW),and Platelet–Large Cell Ratio(P-LCR),were essential for identifying PH mouse models using the feature selection method proposed in this paper.Remarkably,the method achieved 100.0%accuracy and 100.0%specificity in classification,demonstrating that our method has great potential to be used for evaluating and identifying mouse PH models. 展开更多
关键词 Feature selection Pulmonary hypertension whale optimization algorithm extreme learning machine
在线阅读 下载PDF
Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm
8
作者 Saima Hassan Mojtaba Ahmadieh Khanesar +3 位作者 Nazar Kalaf Hussein Samir Brahim Belhaouari Usman Amjad Wali Khan Mashwani 《Computers, Materials & Continua》 SCIE EI 2022年第5期3513-3531,共19页
The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is ... The estimation of the fuzzy membership function parameters for interval type 2 fuzzy logic system(IT2-FLS)is a challenging task in the presence of uncertainty and imprecision.Grasshopper optimization algorithm(GOA)is a fresh population based meta-heuristic algorithm that mimics the swarming behavior of grasshoppers in nature,which has good convergence ability towards optima.The main objective of this paper is to apply GOA to estimate the optimal parameters of the Gaussian membership function in an IT2-FLS.The antecedent part parameters(Gaussian membership function parameters)are encoded as a population of artificial swarm of grasshoppers and optimized using its algorithm.Tuning of the consequent part parameters are accomplished using extreme learning machine.The optimized IT2-FLS(GOAIT2FELM)obtained the optimal premise parameters based on tuned consequent part parameters and is then applied on the Australian national electricity market data for the forecasting of electricity loads and prices.The forecasting performance of the proposed model is compared with other population-based optimized IT2-FLS including genetic algorithm and artificial bee colony optimization algorithm.Analysis of the performance,on the same data-sets,reveals that the proposed GOAIT2FELM could be a better approach for improving the accuracy of the IT2-FLS as compared to other variants of the optimized IT2-FLS. 展开更多
关键词 Parameter optimization grasshopper optimization algorithm interval type-2 fuzzy logic system extreme learning machine electricity market forecasting
在线阅读 下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
9
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery 被引量:2
10
作者 Hongjun SU Shufang TIAN +3 位作者 Yue CAI Yehua SHENG Chen CHEN Maryam NAJAFIAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2017年第4期765-773,共9页
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian... This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Ganssian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly. 展开更多
关键词 extreme learning machine firefly algorithm parameters optimization hyperspectral image classification
原文传递
基于NSWOA-ELM算法的水稻冠层氮素含量反演方法
11
作者 于丰华 曹慧妮 +4 位作者 金忠煜 王楠 李世隆 孙道明 许童羽 《农业机械学报》 北大核心 2025年第7期532-540,共9页
以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于... 以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于多目标鲸鱼优化算法(Non-dominated Sorting whale optimization algorithm,NSWOA)优化的极限学习机(Extreme learning machine,ELM)模型,用于反演水稻冠层氮素含量。利用误差反向传播神经网络(Back propagation neural network,BPNN)和ELM模型,与NSWOA优化后的ELM模型进行对比。结果表明,SPA算法筛选出的特征波长为400、440、487、542、589、660、675、739、766、808、878、912、949 nm。使用筛选后的特征波长反射率构建NSWOA-ELM水稻冠层氮素含量反演模型效果最好,训练集R^(2)为0.859 3,RMSE为0.200 2 mg/g;验证集R^(2)为0.854 3,RMSE为0.206 9 mg/g。与BP神经网络和ELM模型相比,NSWOA-ELM在预测能力和模型稳定性方面具有显著优势。综上,基于NSWOA-ELM的水稻冠层氮素含量反演模型能够为水稻生长状况的描述及精准施肥提供可靠支持。 展开更多
关键词 水稻冠层 氮素 高光谱 多目标鲸鱼优化算法 极限学习机
在线阅读 下载PDF
Adaptive Barebones Salp Swarm Algorithm with Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis 被引量:1
12
作者 Jianfu Xia Hongliang Zhang +5 位作者 Rizeng Li Zhiyan Wang Zhennao Cai Zhiyang Gu Huiling Chen Zhifang Pan 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期240-256,共17页
The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning t... The Salp Swarm Algorithm(SSA)may have trouble in dropping into stagnation as a kind of swarm intelligence method.This paper developed an adaptive barebones salp swarm algorithm with quasi-oppositional-based learning to compensate for the above weakness called QBSSA.In the proposed QBSSA,an adaptive barebones strategy can help to reach both accurate convergence speed and high solution quality;quasi-oppositional-based learning can make the population away from traping into local optimal and expand the search space.To estimate the performance of the presented method,a series of tests are performed.Firstly,CEC 2017 benchmark test suit is used to test the ability to solve the high dimensional and multimodal problems;then,based on QBSSA,an improved Kernel Extreme Learning Machine(KELM)model,named QBSSA–KELM,is built to handle medical disease diagnosis problems.All the test results and discussions state clearly that the QBSSA is superior to and very competitive to all the compared algorithms on both convergence speed and solutions accuracy. 展开更多
关键词 Salp swarm algorithm Bare bones Quasi-oppositional based learning Function optimizations Kernel extreme learning machine
在线阅读 下载PDF
A Data-Driven Rutting Depth Short-Time Prediction Model With Metaheuristic Optimization for Asphalt Pavements Based on RIOHTrack 被引量:1
13
作者 Zhuoxuan Li Iakov Korovin +4 位作者 Xinli Shi Sergey Gorbachev Nadezhda Gorbacheva Wei Huang Jinde Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1918-1932,共15页
Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This stu... Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This study attempts to develop a robust artificial intelligence model to estimate different asphalt pavements’ rutting depth clips, temperature, and load axes as primary characteristics. The experiment data were obtained from19 asphalt pavements with different crude oil sources on a 2.038km long full-scale field accelerated pavement test track(Road Track Institute, RIOHTrack) in Tongzhou, Beijing. In addition,this paper also proposes to build complex networks with different pavement rutting depths through complex network methods and the Louvain algorithm for community detection. The most critical structural elements can be selected from different asphalt pavement rutting data, and similar structural elements can be found. An extreme learning machine algorithm with residual correction(RELM) is designed and optimized using an independent adaptive particle swarm algorithm. The experimental results of the proposed method are compared with several classical machine learning algorithms, with predictions of average root mean squared error(MSE), average mean absolute error(MAE), and a verage mean absolute percentage error(MAPE) for 19 asphalt pavements reaching 1.742, 1.363, and 1.94% respectively. The experiments demonstrate that the RELM algorithm has an advantage over classical machine learning methods in dealing with non-linear problems in road engineering. Notably, the method ensures the adaptation of the simulated environment to different levels of abstraction through the cognitive analysis of the production environment parameters. It is a promising alternative method that facilitates the rapid assessment of pavement conditions and could be applied in the future to production processes in the oil and gas industry. 展开更多
关键词 extreme learning machine algorithm with residual correction(RELM) metaheuristic optimization oil-gas transportation RIOHTrack rutting depth
在线阅读 下载PDF
Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
14
作者 Kailong Xue Yun Qi +2 位作者 Hongfei Duan Anye Cao Aiwen Wang 《Geohazard Mechanics》 2024年第4期279-288,共10页
In order to enhance the accuracy and efficiency of coal and gas outburst prediction,a novel approach combining Kernel Principal Component Analysis(KPCA)with an Improved Whale Optimization Algorithm(IWOA)optimized extr... In order to enhance the accuracy and efficiency of coal and gas outburst prediction,a novel approach combining Kernel Principal Component Analysis(KPCA)with an Improved Whale Optimization Algorithm(IWOA)optimized extreme learning machine(ELM)is proposed for precise forecasting of coal and gas outburst disasters in mines.Firstly,based on the influencing factors of coal and gas outburst disasters,nine coupling indexes are selected,including gas pressure,geological structure,initial velocity of gas emission,and coal structure type.The correlation between each index was analyzed using the Pearson correlation coefficient matrix in SPSS 27,followed by extraction of the principal components of the original data through Kernel Principal Component Analysis(KPCA).The Whale Optimization Algorithm(WOA)was enhanced by incorporating adaptive weight,variable helix position update,and optimal neighborhood disturbance to augment its performance.The improved Whale Optimization Algorithm(IWOA)is subsequently employed to optimize the weight Φ of the Extreme Learning Machine(ELM)input layer and the threshold g of the hidden layer,thereby enhancing its predictive accuracy and mitigating the issue of"over-fitting"associated with ELM to some extent.The principal components extracted by KPCA were utilized as input,while the outburst risk grade served as output.Subsequently,a comparative analysis was conducted between these results and those obtained from WOA-SVC,PSO-BPNN,and SSA-RF models.The IWOA-ELM model accurately predicts the risk grade of coal and gas outburst disasters,with results consistent with actual situations.Compared to other models tested,the model's performance showed an increase in Ac by 0.2,0.3,and 0.2 respectively;P increased by 0.15,0.2167,and 0.1333 respectively;R increased by 0.25,0.3,and 0.2333 respectively;F1-Score increased by 0.2031,0.2607,and 0.1864 respectively;Kappa coefficient k increased by 0.3226,0.4762 and 0.3175,respectively.The practicality and stability of the IWOAELM model were verified through its application in a coal mine in Shanxi Province where the predicted values exactly matched the actual values.This indicates that this model is more suitable for predicting coal and gas outburst disaster risks. 展开更多
关键词 Coal and gas outburst Risk prediction Kernel principal component analysis(KPCA) Improved whale optimization algorithm(IWOA) extreme learning machine(ELM)
在线阅读 下载PDF
Economic Dispatch with High Penetration of Wind Power Using Extreme Learning Machine Assisted Group Search Optimizer with Multiple Producers Considering Upside Potential and Downside Risk
15
作者 Yuanzheng Li Jingjing Huang +4 位作者 Yun Liu Zhixian Ni Yu Shen Wei Hu Lei Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1459-1471,共13页
The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This pape... The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This paper proposes a multi-objective ED(MuOED)model,in which the expected generation cost(EGC),upside potential(USP),and downside risk(DSR)are simultaneously considered.The heterogeneous indices of upside potential and downside risk mean the potential economic gains and losses brought by high penetration of wind power,respectively.Then,the MuOED model is formulated as a tri-objective optimization problem,which is related to uncertain multi-criteria decision-making against uncertainties.Afterwards,the tri-objective optimization problem is solved by an extreme learning machine(ELM)assisted group search optimizer with multiple producers(GSOMP).Pareto solutions are obtained to reflect the trade-off among the expected generation cost,the upside potential,and the downside risk.And a fuzzy decision-making method is used to choose the final ED solution.Case studies based on the Midwestern US power system verify the effectiveness of the proposed MuOED model and the developed optimization algorithm. 展开更多
关键词 Economic dispatch(ED) wind power extreme learning machine optimization algorithm
原文传递
Optimization Ensemble Weights Model for Wind Forecasting System
16
作者 Amel Ali Alhussan El-Sayed M.El-kenawy +3 位作者 Hussah Nasser AlEisa M.El-SAID Sayed A.Ward Doaa Sami Khafaga 《Computers, Materials & Continua》 SCIE EI 2022年第11期2619-2635,共17页
Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.Howeve... Effective technology for wind direction forecasting can be realized using the recent advances in machine learning.Consequently,the stability and safety of power systems are expected to be significantly improved.However,the unstable and unpredictable qualities of the wind predict the wind direction a challenging problem.This paper proposes a practical forecasting approach based on the weighted ensemble of machine learning models.This weighted ensemble is optimized using a whale optimization algorithm guided by particle swarm optimization(PSO-Guided WOA).The proposed optimized weighted ensemble predicts the wind direction given a set of input features.The conducted experiments employed the wind power forecasting dataset,freely available on Kaggle and developed to predict the regular power generation at seven wind farms over forty-eight hours.The recorded results of the conducted experiments emphasize the effectiveness of the proposed ensemble in achieving accurate predictions of the wind direction.In addition,a comparison is established between the proposed optimized ensemble and other competing optimized ensembles to prove its superiority.Moreover,statistical analysis using one-way analysis of variance(ANOVA)and Wilcoxon’s rank-sum are provided based on the recorded results to confirm the excellent accuracy achieved by the proposed optimized weighted ensemble. 展开更多
关键词 Guided whale optimization algorithm(Guided WOA) forecasting machine learning weighted ensemble model wind direction
在线阅读 下载PDF
基于WOA-ELM-LSTM的非稳态热轧过程轧制力预测 被引量:6
17
作者 丁敬国 刘方路 +2 位作者 于琨 李旭 张殿华 《钢铁研究学报》 CAS CSCD 北大核心 2024年第1期85-94,共10页
热连轧生产过程中,因换辊、换钢种、换规格等非稳态轧制条件下,轧制力的预测精度降低,导致产品厚度命中率降低、秒流量控制失衡、宽度拉窄等质量问题,究其原因发现,机制模型在非稳态条件下的模型误差存在较大差异,仅通过层别表模型参数... 热连轧生产过程中,因换辊、换钢种、换规格等非稳态轧制条件下,轧制力的预测精度降低,导致产品厚度命中率降低、秒流量控制失衡、宽度拉窄等质量问题,究其原因发现,机制模型在非稳态条件下的模型误差存在较大差异,仅通过层别表模型参数切换无法实现精准设定。为解决该问题,首先,构建具有计算速度快和预测精度良好的极限学习机作为浅层神经网络,同时构建具有挖掘工业数据特征能力强的短时记忆网络作为深度神经网络。其次,采用鲸鱼算法对极限学习机参数寻优,构建了基于鲸鱼算法优化极限学习机协同长短时记忆网络(whale algorithm to optimize extreme learning machine cooperative long-term and short-term memory network,WOA-ELM-LSTM)的热轧轧制力预测模型,然后增加误差值评判机制,利用长短时记忆网络对轧制力偏差值进行训练并结合极限学习机模型轧制力预测值进行二次修正,将该混合模型与支持向量机、经鲸鱼算法优化后的支持向量机(WOA-SVR)、极限学习机、经鲸鱼算法优化后的极限学习机(WOA-ELM)进行模型预测精度对比。对比结果表明,基于WOA-ELM-LSTM的热轧轧制力模型预测精度明显高于其他方法,该模型的R2值为99.34,轧制力预测偏差在±5%以内,在板带材热连轧生产中有着良好的应用前景。 展开更多
关键词 轧制力预测 热连轧 极限学习机 鲸鱼优化算法 非稳态过程
原文传递
基于WOA-ELM的空间分层结构FBG三维振动加速度传感器非线性解耦 被引量:4
18
作者 孙世政 武宇峰 +2 位作者 何江 徐向阳 陈仁祥 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第7期139-147,共9页
针对三维振动加速度传感器存在的维间耦合干扰问题,以空间分层结构光纤布拉格光栅(FBG)三维振动加速度传感器为研究对象,阐述了三维振动加速度传感的基本原理。其次,构建了振动加速度动态标定实验平台,并分析了传感器的结构耦合特性。最... 针对三维振动加速度传感器存在的维间耦合干扰问题,以空间分层结构光纤布拉格光栅(FBG)三维振动加速度传感器为研究对象,阐述了三维振动加速度传感的基本原理。其次,构建了振动加速度动态标定实验平台,并分析了传感器的结构耦合特性。最后,提出一种基于鲸鱼算法优化极限学习机(WOA-ELM)的神经网络模型并进行了非线性解耦实验,其结果显示,在x、y、z三轴的平均测量误差分别降至1.58%、1.17%、0.95%,平均I类和II类误差最大值分别降至0.73%和0.37%。为验证解耦效果,将WOA-ELM与其他算法等进行解耦效果对比。结果表明,WOA-ELM更有效地降低三维振动加速度传感器的维间耦合干扰,提高测量精度。 展开更多
关键词 光纤布拉格光栅 三维振动加速度传感器 维间耦合 鲸鱼优化算法 极限学习机
原文传递
Boiler NOx emission prediction based on ensemble learning and extreme learning machine optimization
19
作者 Ze Dong Jun Li +2 位作者 Xinxin Zhao Wei Jiang Mingshuai Gao 《Particuology》 2025年第10期123-139,共17页
The nitrogen oxides(NOx)emission measurement of selective catalytic reduction(SCR)denitrification system has issues that insufficient live processing and irregular purge readings.Therefore,establishing an accurate NOx... The nitrogen oxides(NOx)emission measurement of selective catalytic reduction(SCR)denitrification system has issues that insufficient live processing and irregular purge readings.Therefore,establishing an accurate NOx concentration prediction model can significantly advance the timeliness and precision of NOx measurement.The study proposes a prediction method based on ensemble learning and extreme learning machine(ELM)optimization to build a NOx concentration prediction model for SCR denitrification system outlet.Firstly,to enhance the modeling precision of ELM for complex feature objects under all working conditions,the ensemble learning framework was introduced and an ensemble learning model based on ELM was designed.Secondly,to alleviate the impact of random initialization of ELM network learning parameters on the stability of modeling performance,the multi strategy improved dingo optimization algorithm(MS-DOA)is given by introducing Tent chaotic mapping,Lévy flight and adaptive t-distribution strategy to ameliorate the initial solution and position update process of population.Finally,the SCR denitrification operating data from 660 MW coal-fired power plant was opted for experimental validation.The findings demonstrate that the established SCR denitrification system outlet NOx concentration prediction model has high modeling accuracy and prediction accuracy,and provides a reliable approach for achieving accurate prediction of boiler NOx emissions. 展开更多
关键词 NOx emission prediction extreme learning machine(ELM) Ensemble learning Dingo optimization algorithm
原文传递
基于IWOA-ELM-AE的电力资产信息管理系统异常数据检测方法 被引量:11
20
作者 李凯 靳书栋 +2 位作者 刘宏志 王艳梅 杨晓营 《沈阳工业大学学报》 CAS 北大核心 2024年第3期255-262,共8页
针对当前电力资产信息管理系统难以准确自主发现异常数据的问题,提出了一种基于IWOA-ELM-AE的电力资产信息管理系统异常数据检测方法。在管理系统框架下分析了可能存在的异常类型,将改进鲸鱼优化算法(IWOA)用于优化极限学习机自编码器(E... 针对当前电力资产信息管理系统难以准确自主发现异常数据的问题,提出了一种基于IWOA-ELM-AE的电力资产信息管理系统异常数据检测方法。在管理系统框架下分析了可能存在的异常类型,将改进鲸鱼优化算法(IWOA)用于优化极限学习机自编码器(ELM-AE),建立了电力信息系统异常数据优化检测模型。将模型应用于电力资产信息异常数据检测,并建立性能评估指标体系以衡量其效果。结果表明:所提方法的检测性能评估结果与传统模型相比具有显著优势,能够更为准确地检测电力资产信息中存在的异常数据。 展开更多
关键词 信息管理系统 电力资产 异常数据检测 极限学习机 自编码器 鲸鱼优化算法 检测性能 评估指标
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部