期刊文献+
共找到1,764篇文章
< 1 2 89 >
每页显示 20 50 100
Whale & Dolphin Watching
1
《空中英语教室(初级版.大家说英语)》 2025年第6期43-45,56,共4页
Find It What do boat captai ns try to do?W hale and dolphin watching is a popular thing to do off the coast of Hualien.*It is an amazing adventure!Imagine this:You are on a boat.Then a big whale jumps out of the water.
关键词 BOAT CAPTAIN whale COAST dolphin watching DOLPHIN Hualien WATCHING
原文传递
Grey whales:The ocean's gymnasts
2
作者 路冬梅 《疯狂英语(新悦读)》 2025年第7期38-40,78,共4页
1 Move over Simone Biles,because grey whales might just be the next Olympic champions.This conclusion can be drawn from a new study that filmed these amazing animals doing underwater headstands(头倒立)and other moves.... 1 Move over Simone Biles,because grey whales might just be the next Olympic champions.This conclusion can be drawn from a new study that filmed these amazing animals doing underwater headstands(头倒立)and other moves.2 As part of a seven-year project,scientists used drones(无人驾驶飞机)to observe a group of 200 grey whales off the coasts of Oregon,Washington,northern California and southern Canada.The new study findings,published in Animal Behaviour,revealed that grey whales do headstands by pressing their mouths against the ocean floor while searching for something to eat.Scientists also noticed that when doing headstands,grey whales move like human synchronized swimmers. 展开更多
关键词 underwater headstands animal behaviour pressing their mouths agai headstands DRONES grey whales
在线阅读 下载PDF
First record of twin fetuses in a stranded Cuvier’s beakedwhale or goose-beaked whale(Ziphius cavirostris)
3
作者 Angelico Jose C.Tiongson Jean Asuncion Utzurrum +1 位作者 Denzyl G.Divinagracia Jo Marie Acebes 《Current Zoology》 2025年第2期263-266,共4页
Cetaceans include the largest animals ever to have lived onearth and are uniparous(producing a single calf at each birth)across the infraorder.However,instances of multiple fetuseshave been observed naturally among un... Cetaceans include the largest animals ever to have lived onearth and are uniparous(producing a single calf at each birth)across the infraorder.However,instances of multiple fetuseshave been observed naturally among uniparous mammals,including cetaceans.Despite this,there is no known documented case of twins in cetaceans successfully carried to termin the wild(Perrin and Donovan 1984),and if such casesexist,they would be diffcult to detect. 展开更多
关键词 beaked whale CETACEANS marine mammals TWINNING ZIPHIIDAE
原文传递
Neurodegenerative Diseases:What Can Be Learned from Toothed Whales?
4
作者 Simona Sacchini 《Neuroscience Bulletin》 2025年第2期326-338,共13页
Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity,physiology,and architecture of neural cells.Many studies have demonstrated neurodegeneration in different animals.In the... Neurodegeneration involves a wide range of neuropathological alterations affecting the integrity,physiology,and architecture of neural cells.Many studies have demonstrated neurodegeneration in different animals.In the case of Alzheimer's disease(AD),spontaneous animal models should display two neurohistopathological hallmarks:the deposition ofβ-amyloid and the arrangement of neurofibrillary tangles.However,no natural animal models that fulfill these conditions have been reported and most research into AD has been performed using transgenic rodents.Recent studies have also demonstrated that toothed whales-homeothermic,long-lived,top predatory marine mammals-show neuropathological signs of AD-like pathology.The neuropathological hallmarks in these cetaceans could help to better understand their endangered health as well as neurodegenerative diseases in humans.This systematic review analyzes all the literature published to date on this trending topic and the proposed causes for neurodegeneration in these iconic marine mammals are approached in the context of One Health/Planetary Health and translational medicine. 展开更多
关键词 Neurodegenerative diseases NEURODEGENERATION Alzheimer’s disease Amyloidβ Natural animal models CETACEANS Toothed whales
原文传递
Representation of Indigenous Elements in the Translation of New Zealand Māori Literature:Taking the Chinese Translation of“The Whale Rider”as an Example
5
作者 Chao GUAN Hui LUO Sadat MUAIAVA 《译苑新谭》 2025年第2期8-16,共9页
The Māori people are indigenous to Aotearoa New Zealand,and their language and culture are considered vital components of the nation’s cultural heritage.However,Te Reo Māori is regarded as a lowresource language ou... The Māori people are indigenous to Aotearoa New Zealand,and their language and culture are considered vital components of the nation’s cultural heritage.However,Te Reo Māori is regarded as a lowresource language outside of New Zealand,and its literary works usually rely on English as a pivot language for translation and communication.Therefore,in the process of promoting Māori literature as part of world literature by translating it into non-English languages,the accurate translation of cultural keywords is crucial to prevent dilemmas such as information loss and cultural misappropriation.In this article,we aim to explore effective translation strategies to enhance the international visibility and readership of Māori literature by analysing the rendition of Māori cultural keywords in the Chinese translation of“The Whale Rider”. 展开更多
关键词 “The whale Rider” indigenous literature Māori compensatory translation
原文传递
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
6
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Optimal power extraction of PV-TEG hybrid system via fitness-distance-balance-based beluga whale optimization
7
作者 Bo Yang Boxiao Liang +4 位作者 Shaocong Wu Hongbiao Li Dengke Gao Lin Jiang Jingbo Wang 《Global Energy Interconnection》 2025年第1期43-61,共19页
This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power pro... This study integrates the individual photovoltaic(PV)and thermoelectric generator(TEG)systems into a PV-TEG hybrid system to improve its overall power output by reutilizing the waste heat generated during PV power production to enhance its operational relia-bility.However,stochastic environmental conditions often result in partial shading conditions and nonuniform thermal distribution across the PV-TEG modules,which negatively affect the output characteristics of the system,thus presenting a significant challenge to maintaining their optimal performance.To address these challenges,a novel fitness-distance-balance-based beluga whale optimization(FDBBWO)strategy has been devised for maximizing the power output of the PV-TEG hybrid system under dynamic operation scenar-ios.A broader spectrum of complex and authentic operational contexts has been considered in case studies to examine the effectiveness and feasibility of FDBBWO.For this,real-world datasets collected from different seasons in Hong Kong have been used to validate the practical viability of the proposed strategy.Simulation results reveal that the FDBBWO based maximum power point tracking technique outperforms its competing methods by achieving the highest energy output,with a remarkable increase of up to 134.25%with minimal power fluctuations.For instance,the energy obtained by FDBBWO is 47.45%and 58.34%higher than BWO and perturb and observe methods,respectively,in the winter season. 展开更多
关键词 Photovoltaic-thermoelectric-generator Hybrid system Maximum power point tracking Partial shading conditions Fitness-distance-balance-based beluga whale optimization SimuNPS
在线阅读 下载PDF
Hybrid Spotted Hyena and Whale Optimization Algorithm-Based Dynamic Load Balancing Technique for Cloud Computing Environment
8
作者 N Jagadish Kumar R Praveen +1 位作者 D Selvaraj D Dhinakaran 《China Communications》 2025年第8期206-227,共22页
The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is n... The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap. 展开更多
关键词 cloud computing load balancing Spotted Hyena Optimization Algorithm(SHOA) THROUGHPUT Virtual Machines(VMs) whale Optimization Algorithm(WOA)
在线阅读 下载PDF
A Sine and Wormhole Energy Whale Optimization Algorithm for Optimal FACTS Placement in Uncertain Wind Integrated Scenario Based Power Systems
9
作者 Sunilkumar P.Agrawal Pradeep Jangir +4 位作者 Arpita Sundaram B.Pandya Anil Parmar Ahmad O.Hourani Bhargavi Indrajit Trivedi 《Journal of Bionic Engineering》 2025年第4期2115-2134,共20页
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT... The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study. 展开更多
关键词 Sine and wormhole energy whale optimization algorithm(SWEWOA) Optimal power flow(OPF) Wind integration FACTS devices Power system optimization
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
10
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization Algorithm(GJOA) Improved whale Optimization Algorithm(IWOA) unequal clustering
在线阅读 下载PDF
An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm
11
作者 Thi-Kien Dao Trong-The Nguyen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2201-2237,共37页
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand... Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios. 展开更多
关键词 Node localization whale optimization algorithm wireless sensor networks siege whale optimization algorithm OPTIMIZATION
在线阅读 下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
12
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
在线阅读 下载PDF
Model Parameters Identification and Backstepping Control of Lower Limb Exoskeleton Based on Enhanced Whale Algorithm 被引量:1
13
作者 Yan Shi Jiange Kou +2 位作者 Zhenlei Chen Yixuan Wang Qing Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期100-114,共15页
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i... Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value. 展开更多
关键词 Parameter identification Enhanced whale optimization algorithm(EWOA) BACKSTEPPING Human-robot interaction Lower limb exoskeleton
在线阅读 下载PDF
Optimal proportioning of iron ore in sintering process based on improved multi-objective beluga whale optimisation algorithm 被引量:1
14
作者 Zong-ping Li Xu-dong Li +5 位作者 Xue-tong Yan Wu Wen Xiao-xin Zeng Rong-jia Zhu Ya-hui Wang Ling-zhi Yi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第7期1597-1609,共13页
Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the... Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the sintering process,a multi-objective optimisation model for sintering proportioning was established,which takes the proportioning cost and TFe as the optimisation objectives.Additionally,an improved multi-objective beluga whale optimisation(IMOBWO)algorithm was proposed to solve the nonlinear,multi-constrained multi-objective optimisation problems.The algorithm uses the con-strained non-dominance criterion to deal with the constraint problem in the model.Moreover,the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity.The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front.Meanwhile,compared with the actual proportioning scheme,the proportioning cost is reduced by 4.3361¥/t,and the TFe content in the mixture is increased by 0.0367%in the optimal compromise solution.Therefore,the proposed method effectively balances the cost and total iron,facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance. 展开更多
关键词 Sintering process Proportioning Iron ore Multi-objective beluga whale optimisation algorithm Proportioning cost
原文传递
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
15
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
在线阅读 下载PDF
Multi-trial Vector-based Whale Optimization Algorithm
16
作者 Mohammad H.Nadimi-Shahraki Hajar Farhanginasab +2 位作者 Shokooh Taghian Ali Safaa Sadiq Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1465-1495,共31页
The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited... The Whale Optimization Algorithm(WOA)is a swarm intelligence metaheuristic inspired by the bubble-net hunting tactic of humpback whales.In spite of its popularity due to simplicity,ease of implementation,and a limited number of parameters,WOA’s search strategy can adversely affect the convergence and equilibrium between exploration and exploitation in complex problems.To address this limitation,we propose a new algorithm called Multi-trial Vector-based Whale Optimization Algorithm(MTV-WOA)that incorporates a Balancing Strategy-based Trial-vector Producer(BS_TVP),a Local Strategy-based Trial-vector Producer(LS_TVP),and a Global Strategy-based Trial-vector Producer(GS_TVP)to address real-world optimization problems of varied degrees of difficulty.MTV-WOA has the potential to enhance exploitation and exploration,reduce the probability of being stranded in local optima,and preserve the equilibrium between exploration and exploitation.For the purpose of evaluating the proposed algorithm's performance,it is compared to eight metaheuristic algorithms utilizing CEC 2018 test functions.Moreover,MTV-WOA is compared with well-stablished,recent,and WOA variant algorithms.The experimental results demonstrate that MTV-WOA surpasses comparative algorithms in terms of the accuracy of the solutions and convergence rate.Additionally,we conducted the Friedman test to assess the gained results statistically and observed that MTV-WOA significantly outperforms comparative algorithms.Finally,we solved five engineering design problems to demonstrate the practicality of MTV-WOA.The results indicate that the proposed MTV-WOA can efficiently address the complexities of engineering challenges and provide superior solutions that are superior to those of other algorithms. 展开更多
关键词 Swarm intelligence algorithms Metaheuristic algorithms Optimization Engineering design problems whale optimization algorithm
在线阅读 下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
17
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
在线阅读 下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
18
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 CLUSTERING energy stability network lifetime seagull optimization algorithm(SEOA) whale optimization algorithm(WOA) wireless sensor networks(WSNs)
在线阅读 下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
19
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent Neural Network(RNN) whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
在线阅读 下载PDF
Application of Adaptive Whale Optimization Algorithm Based BP Neural Network in RSSI Positioning
20
作者 Duo Peng Mingshuo Liu Kun Xie 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期516-529,共14页
The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A a... The paper proposes a wireless sensor network(WSN)localization algorithm based on adaptive whale neural network and extended Kalman filtering to address the problem of excessive reliance on environmental parameters A and signal constant n in traditional signal propagation path loss models.This algorithm utilizes the adaptive whale optimization algorithm to iteratively optimize the parameters of the backpropagation(BP)neural network,thereby enhancing its prediction performance.To address the issue of low accuracy and large errors in traditional received signal strength indication(RSSI),the algorithm first uses the extended Kalman filtering model to smooth the RSSI signal values to suppress the influence of noise and outliers on the estimation results.The processed RSSI values are used as inputs to the neural network,with distance values as outputs,resulting in more accurate ranging results.Finally,the position of the node to be measured is determined by combining the weighted centroid algorithm.Experimental simulation results show that compared to the standard centroid algorithm,weighted centroid algorithm,BP weighted centroid algorithm,and whale optimization algorithm(WOA)-BP weighted centroid algorithm,the proposed algorithm reduces the average localization error by 58.23%,42.71%,31.89%,and 17.57%,respectively,validating the effectiveness and superiority of the algorithm. 展开更多
关键词 wireless sensor network received signal strength neural network whale optimization algorithm adaptive weight factor extended Kalman filter
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部