期刊文献+
共找到476篇文章
< 1 2 24 >
每页显示 20 50 100
Fabrication and Wettable Investigation of Superhydrophobic Surface by Soft Lithography
1
作者 LI Gang LI Zhigang +2 位作者 LU Liming XIE Long DENG Chunsheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期138-141,共4页
The natural hydrophobicity of surfaces can be enhanced if they are microtextured due to air trapped in the structure, which provides the deposited drop with a composite surface made of solid and air on which it is res... The natural hydrophobicity of surfaces can be enhanced if they are microtextured due to air trapped in the structure, which provides the deposited drop with a composite surface made of solid and air on which it is rest. Here, a series of grating microstructure surfaces with different parameters have been designed and fabricated by a novel soft lithography. The water contact angles (WCA) on these rough surfaces are measured through optical contact angle meter. The results indicate that all the WCA on the surfaces with grating microstructures are up to 150~; WCA increases and the hydrophobic performance also enhances with the decrease of the ridge width under the other fixed parameter condition; Experimental data obtained basically consists with the Cassie's theoretical prediction. The effects of geometric parameters of the microstructures on wettability of the grating sufaces are investigated. 展开更多
关键词 MICROTEXTURE SUPERHYDROPHOBICITY composite surface WETTABILITY bearing lubrication
原文传递
Frog tongue-inspired wettable microfibers for particles capture
2
作者 Jiahui Guo Lingyu Sun +1 位作者 Han Zhang Yuanjin Zhao 《Science Bulletin》 2025年第3期383-389,共7页
Fibers have been of great significance in our daily lives,especially in the industrial production of masks.Research in this area has been focused on developing microfibers with superior functions to enhance the filtra... Fibers have been of great significance in our daily lives,especially in the industrial production of masks.Research in this area has been focused on developing microfibers with superior functions to enhance the filtration performances of the masks.Herein,inspired by the frog’s predation mechanism using its tongues to swiftly grab flying insects,we propose novel porous wettable microfibers from microfluidics to efficiently capture particles in the air for filtration.Upon pre-dispersing LP emulsions into polyurethane(PU),porous microfibers dispersed with oil droplets could be continuously spun from a co-flow microfluidic device based on the quick phase inversion of PU.To design an optimal system with frog-tongue-like interfacial adhesion properties,the wettability performances of the porous microfibers are investigated under full,partial,and no oil coverage conditions.When implemented in a mask,the 3D patterned networks based on the frog-tongue-inspired microfibers have been proven with remarkable particle capture performances while maintaining good air permeability.Based on these features,we believe that frog-tongue-inspired microfibers and their derived masks are of practical significance in multiple applications. 展开更多
关键词 BIOINSPIRED Microfluidics MICROFIBER WETTABILITY Mask
原文传递
Unidirectional transport of both wettable and nonwettable liquids on an asymmetrically concave structured surface
3
作者 Zhongxue Tang Kang Luan +1 位作者 Bojie Xu Huan Liu 《Fundamental Research》 CAS CSCD 2024年第3期557-562,共6页
Unidirectional liquid transport(UDLT)has been widely used in various fields as an important process for transferring both mass and energy.However,UDLT driven by a structural gradient has been witnessed for a long time... Unidirectional liquid transport(UDLT)has been widely used in various fields as an important process for transferring both mass and energy.However,UDLT driven by a structural gradient has been witnessed for a long time only in wettable liquids.For nonwettable liquids,UDLT can hardly proceed merely by a structural gradient.Herein,we propose an asymmetrically concave structured surface(AMC-surface),featuring tip-to-base periodically arranged pyramid-shaped concave structures with a certain degree of overlap,which enables the UDLT of both wettable and nonwettable liquids.For wettable liquids,the capillary force along each corner leads to the UDLT pointing toward the base side of the concave pyramid,while for nonwettable liquids,the UDLT is attributable to the static liquid pressure overwhelming the repulsive Laplace pressure induced by the asymmetric grooves and overlapping part.As a result,both wettable and nonwettable liquids transport spontaneously and unidirectionally on the AMC-surface with no energy input.Moreover,the concave structure endows good mechanical stability and can be easily prepared using a facile nail-punching approach over a large area.We also demonstrated its application in a continuous chemical reaction in a confined area.We envision that the unique UDLT behavior on the as-developed AMC-surface will shed new light on the programmable manipulation of various liquids. 展开更多
关键词 Unidirectional liquidtransport Asymmetrically concave structure Capillary force Laplace pressure WETTABILITY
原文传递
Construction of efficient electrodes for CO_(2)RR through microenvironment regulation of hydrophobic ionomer 被引量:1
4
作者 Qingfeng Chang Gong Zhang +7 位作者 Jinxing Chen Xiaowei Du Chujun Wang Yuan Cai Yuzhe Du Peng Zhang Tuo Wang Jinlong Gong 《Journal of Energy Chemistry》 2025年第9期373-380,I0011,共9页
CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient... CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient three-phase reaction interface that significantly enhances current density.However,current hydrophobic modification methods face difficulties in achieving precise and substantial control over wettability,and the hydrophobic modifiers tend to significantly impair the conductivity of the electrode and ion transport capabilities.This study employs Nafion ionomers to hydrophobically modify the threedimensional catalyst layer,revealing the bifunctionality of Nafion.The fluorinated backbone of Nafion ensures the hydrophobicity of the entire catalyst layer,while its sulfonic acid groups promote ion transport,without significantly affecting the conductivity of the electrode.Furthermore,by employing modifiers with distinct wettability characteristics,a highly efficient and large-scale manipulation of the hydrophilic/hydrophobic properties of the catalyst layer was successfully realized.The electrode,constructed with silver nanopowder as a representative catalyst and modified with the hydrophobic ionomer Nafion,exhibits a substantial enhancement in both catalytic activity and durability.The optimized electrode exhibited exceptional electrocatalytic performance in both flow cell and membrane electrode assembly(MEA)configurations.Notably,in the MEA,the electrode achieved a remarkable CO Faradaic efficiency(FE)of 93.3%at a total current density of 200 mA cm^(-2),while maintaining stable operation for over 62 h. 展开更多
关键词 GDE CO_(2)RR WETTABILITY Hydrophobic ionomer
在线阅读 下载PDF
Smart Cellulose‑Based Janus Fabrics with Switchable Liquid Transportation for Personal Moisture and Thermal Management
5
作者 Jianfeng Xi Yanling Lou +5 位作者 Liucheng Meng Chao Deng Youlu Chu Zhaoyang Xu Huining Xiao Weibing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期333-347,共15页
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of mana... The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort.However,the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge.Herein,a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat.The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel.Subsequently,hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient.The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side,and can dynamically and continuously control the transportation time in a wide range of 3–66 s as the temperature increases from 10 to 40℃.This smart fabric can quickly dissipate heat at high temperatures,while at low temperatures,it can slow down the heat dissipation rate and prevent the human from becoming too cold.In addition,the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side.This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations. 展开更多
关键词 Directional water transport Cotton fabric Anti-gravity directional liquid transportation Janus wettability
在线阅读 下载PDF
Effects of extended anionic surfactants on the wettability of polytetrafluoroethylene interface
6
作者 Qi Sun Zhengrong Zhao +2 位作者 Zhicheng Xu Lei Zhang Lu Zhang 《日用化学工业(中英文)》 北大核心 2025年第8期949-960,共12页
In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypro... In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypropylene(PO)and oxyethylene(EO),octadecyl-(PO)_(m)-(EO)_(n)-sodium carboxylate(C_(18)PO_(m)EO_(n)C,m=5,10,15,n=5,10,15),were studied.The surface tension and contact angle of C_(18)PO_(m)EO_(n)C solution with different concentrations were measured,and the adhesion tension,PTFE-water interfacial tension,and adhesion work were calculated.It was found that the extended surfactant molecules adsorb on the surface of the solution and the PTFE-liquid interface simultaneously when the concentration is lower than the critical micelle concentration(cmc),and there was a linear relationship between surface tension and adhesion tension.The adsorption amount of C_(18)PO_(m)EO_(n)C at the PTFE-water interface was significantly lower than that on the surface of the solution.As the concentration increases above cmc,semi-micelle aggregates on the surface of PTFE are formed by C_(18)PO_(m)EO_(n)C molecules through hydrophobic interaction,and the hydrophilic group faces the solution to modify the surface of PTFE with high efficiency. 展开更多
关键词 WETTABILITY contact angle extended surfactant polypropylene oxide polyethylene oxide
在线阅读 下载PDF
Mesoporous SiO_(2)nanoparticles with low surface energy and multi-level roughness as shale wellbore stabilizers in oil-based drilling fluid
7
作者 Hong-Yan Du Kai-He Lv +5 位作者 Jin-Sheng Sun Mei-Chun Li Yuan Geng Xian-Bin Huang Hao-Kun Shen Muhammad Arqam Khan 《Petroleum Science》 2025年第1期384-397,共14页
Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However... Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However, wellbore instability, caused by the invasion of drilling fluids into shale formations, remains a significant challenge for the safe and efficient extraction of shale oil and gas. This work reports the preparation of mesoporous SiO2nanoparticles with low surface energy, utilized as multifunctional agents to enhance the performance of oil-based drilling fluids aimed at improving wellbore stability. The results indicate that the coating prepared from these nanoparticles exhibit excellent hydrophobicity and antifouling properties, increasing the water contact angle from 32°to 146°and oil contact angle from 24°to134.8°. Additionally, these nanoparticles exhibit exceptional chemical stability and thermal resistance.Incorporating these nanoparticles into oil-based drilling fluids reduced the surface energy of the mud cake from 34.99 to 8.17 m J·m-2and increased the roughness of shale from 0.26 to 2.39 μm. These modifications rendered the mud cake and shale surfaces amphiphobic, effectively mitigating capillary infiltration and delaying the long-term strength degradation of shale in oil-based drilling fluids. After 28days of immersion in oil-based drilling fluid, shale cores treated with MF-SiO2exhibited a 30.5% increase in compressive strength compared to untreated cores. Additionally, these nanoparticles demonstrated the ability to penetrate and seal rock pores, reducing the API filtration volume of the drilling fluid from11.2 to 7.6 m L. This study introduces a novel approach to enhance the development of shale gas and oil resources, offering a promising strategy for wellbore stabilization in oil-based drilling fluid systems. 展开更多
关键词 FLUOROSILANE WETTABILITY Wellbore stability Drilling engineering SELF-CLEANING ANTIFOULING
原文传递
Bio-inspired wet/lubricious/adhesive soft matter and performance control in-between
8
作者 Shuanhong Ma Desheng Liu +6 位作者 Wenbo Sheng Yanfei Ma Bin Li Xiaoduo Zhao Xiaolong Wang Feng Zhou Weimin Liu 《Advanced Bionics》 2025年第1期29-56,共28页
Nature evolves soft but structural architectures with typical wet/lubricous/adhesive behavior,as well as tunable interface functionalities,such as superhydrophilicity,superhydrophobic,superlubricity,high adhesion,etc.... Nature evolves soft but structural architectures with typical wet/lubricous/adhesive behavior,as well as tunable interface functionalities,such as superhydrophilicity,superhydrophobic,superlubricity,high adhesion,etc.In order to simulate this,new chemistry modification methods,novel polymers materials and advanced manufacture techniques are developed for engineering diverse bioinspired wet/lubricous/adhesive soft matter systems.This review focuses on two typical interface functionalities of soft architectures in nature:wet lubrication and wet adhesion.Correspondingly,systematic summaries of recent progress for constructing bioinspired wet/lubricious/adhesive soft matter systems are proposed,including the surface grafting methods to construct hydrophilic wet lubrication surfaces,the bionic design of mechanically robust and structured soft matter lubrication materials,the novel preparation of high-performance biomimetic wet adhesion materials,and the advanced manufacture of 3D soft matter-based wet/lubricious devices.Subsequently,the current strategies relying on diverse regulation factors including surface hydration/roughness,surface intrinsic states,bulk mechanics,as well as multi-factors synergy,are introduced and discussed for achieving dynamic friction or adhesion control of bioinspired soft matter lubrication/adhesion systems.Finally,the existing problems,challenges and future development directions of bioinspired wet/lubricious/adhesive soft matter materials and devices are discussed.This review provides clear guidance for designing bioinspired soft matter-based lubrication,adhesion,or adhesion-lubrication switchable systems,and would act as a necessary research handbook in the field of surface/interface wettability engineering,bioengineering,medical devices,soft robotics,etc. 展开更多
关键词 BIOINSPIRED Soft matter WETTABILITY LUBRICATION Adhesion Friction control
在线阅读 下载PDF
Fabrication of SiO_(2)/PDMS/EP superhydrophobic coating for anti-icing
9
作者 Shiyuan Zhou Jingran Chen Shuai Huang 《Resources Chemicals and Materials》 2025年第1期54-63,共10页
In low-temperature environments,the condensation and icing phenomena of water molecules on material sur-faces may adversely affect the functionality and durability of various products,so it is critical to improve the ... In low-temperature environments,the condensation and icing phenomena of water molecules on material sur-faces may adversely affect the functionality and durability of various products,so it is critical to improve the antiicing properties of material surfaces.In this study,the anti-icing mechanism of superhydrophobic coatings was analyzed based on the surface wettability theory,and SiO_(2)/PDMS/EP superhydrophobic coating was fabricated by the spraying method.The surface wettability,surface micro-morphology,and surface chemical composition of the coating was characterized,and the stability of the coating as well as the anti-icing properties were investi-gated.The results show that the SiO_(2)/PDMS/EP superhydrophobic coating sprayed on the Al-based surface has a contact angle of 163.3° and a sliding angle of 4°,and the coating maintains excellent superhydrophobicity at a low temperature of-15°.This coating can significantly delay the freezing time and temperature of droplets on its surface,reduce the shear force and natural deicing time required to remove surface ice,and exhibit excellent anti-icing performance.The excellent anti-icing durability of the coating was demonstrated by the icing-deicing cycle experiment.Subsequently,the anti-frosting performance was further investigated,and the results showed that it effectively slowed down the speed of frost formation.Therefore,the superhydrophobic coating fabricated in this study is suitable for a wide range of working conditions and has potential practicality.It also provides experimental guidance for the application of anti-icing coatings on Al surfaces. 展开更多
关键词 Superhydrophobic coating WETTABILITY ANTI-ICING Anti-frosting
在线阅读 下载PDF
Effect of Photoresist Biomimetic Surface Roughness on Droplet Evaporation Dynamics
10
作者 Zhihao Zhang Xiangcheng Gao Yuying Yan 《Journal of Bionic Engineering》 2025年第3期1338-1351,共14页
Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a sub... Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials. 展开更多
关键词 Biomimetics Droplet evaporation Surface roughness WETTABILITY Interfacial phenomenon
在线阅读 下载PDF
Experimental investigation on the effects of deep eutectic solvents (DES) on the wettability of sandstone samples
11
作者 Jun-Hui Guo Yun-Fei Bai +8 位作者 Lin Du Li-Ying Wei Yu Zhao Xian-Bao Zheng Er-Long Yang Zhi-Guo Wang Hai Huang Wen-Tong Zhang Hua-Zhou Li 《Petroleum Science》 2025年第3期1380-1390,共11页
Recently, deep eutectic solvents (DES) have received great attention in assisting water flooding and surfactant flooding to improve oil recovery because they can reduce the interfacial tension (IFT) between oil and wa... Recently, deep eutectic solvents (DES) have received great attention in assisting water flooding and surfactant flooding to improve oil recovery because they can reduce the interfacial tension (IFT) between oil and water, inhibit surfactant adsorption, and change the wettability of rock. However, the effects of DES on the wettability of rock surface have not been thoroughly investigated in the reported studies. In this study, the effects of various DES samples on the wettability of sandstone samples are investigated using the Amott wettability measurement method. Three DES samples and several DES solutions and DES-surfactant solutions are firstly synthesized. Then, the wettability of the sandstone samples is measured using pure saline water, DES solutions, and DES-surfactant solutions, respectively. The effects of the DES samples on the wettability of the sandstone samples are investigated by comparing the measured wettability parameters, including oil displacement ratio (I_(o)), water displacement ratio (I_(w)), and wettability index (I_(A)). The Berea rock sample used in this study is weakly hydrophilic with I_(o), I_(w), and I_(A) of 0.318, 0.032, and 0.286, respectively. Being processed by the prepared DES samples, the wettability of the Berea sandstone samples is altered to hydrophilic (0.7 > I_(A) > 0.3) by increasing I_(w) but lowering Io. Similarly, DES-surfactant solutions can also modify the wettability of the Berea sandstone samples from weakly hydrophilic to hydrophilic. However, some DES-surfactant solutions can not only increase I_(w) but also increase I_(o), suggesting that the lipophilicity of those sandstone samples will be improved by the DES-surfactant solutions. In addition, micromodel flooding tests confirm the promising performance of a DES-surfactant solution in improving oil recovery and altering wettability. Moreover, the possible mechanisms of DES and DES-surfactant solutions in altering the wettability of the Berea sandstone samples are proposed. DES samples may improve the hydrophilicity by forming hydrogen bonds between rock surface and water molecules. For DES-surfactant solutions, surfactant micelles can capture oil molecules to improve the lipophilicity of those sandstone samples. 展开更多
关键词 Deep eutectic solvents SURFACTANT Wettability alteration Sandstone rock
原文传递
The coating application for enhanced adhesion between GFRP composites and cataphoresis-coated(KTL)steel–part 2:surface properties
12
作者 Celalettin Baykara Enes Bilgin 《Railway Sciences》 2025年第5期565-579,共15页
Purpose–This study examines the effect of increased surface energy on adhesion strength.Surface modifications were made using chemical coating methods such as primer paint(primer)and cataphoresis(KTL,Kathodische Tauc... Purpose–This study examines the effect of increased surface energy on adhesion strength.Surface modifications were made using chemical coating methods such as primer paint(primer)and cataphoresis(KTL,Kathodische Tauchlackierung).The wetting behaviour of adhesive on these surfaces and the resulting contact angles were analysed to evaluate bonding effectiveness.Design/methodology/approach–Primer paint was applied to glass fibre reinforced plastic(GFRP)materials and cataphoresis coating was applied to steel.Contact angles of the coated surfaces were measured and compared to those of the uncoated(natural)surfaces.Findings–Results showed that applying primer to GFRP and KTL to steel increased their surface energy compared to untreated surfaces.A decrease in contact angle correlated with improved wetting,suggesting enhanced adhesion potential.Originality/value–While the effects of surface coatings on adhesion have been studied,there is limited research specifically on the adhesion-enhancing potential of KTL coatings.Typically used for corrosion resistance,KTL is shown here to also improve adhesion.The novelty lies in experimentally demonstrating KTL’s dual role as both a protective and adhesion-enhancing layer. 展开更多
关键词 Surface tension Surface energy Contact angle WETTABILITY Adhesive bonding
在线阅读 下载PDF
Remediation of a Pb and Cd-contaminated clayey soil via magnetic-enhanced washing
13
作者 Dahu RUI Yuru WANG +5 位作者 Wenjun NIE Mintae KIM Jun ZHANG Shuren WANG Yuzuru ITO Fujun NIU 《Pedosphere》 2025年第3期526-533,共8页
The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the phy... The contact between contaminant and washing solution is a fundamental factor that limits the contaminant removal efficiency of chemical washing.In this study,the magnetization technique was employed to improve the physicochemical properties of ethylene diamine tetraacetic acid(EDTA)solutions for the removal of lead(Pb)and cadmium(Cd)from a contaminated clayey soil.Furthermore,EDTA concentration,magnetization strength,and magnetization time were varied as parameters for enhancing the contact between contaminant and washing solution to improve remediation efficiency.The results showed that after magnetization,the viscosities,surface tensions,and contact angles of EDTA solutions decreased,whereas the electrical conductivity and pH increased.In particular,the viscosities of high-concentration EDTA solutions increased with increasing magnetic field strength and magnetization time.The magnetized EDTA solutions increased the maximum removal rates of Cd and Pb by 64.46% and 35.49%,respectively,compared to the unmagnetized EDTA solutions.The results highlighted the efficient metal removal by magnetized washing solutions due to the better contact between the washing solutions and the contaminants.The magnetic-enhanced soil washing method was proven to be efficient,cost-effective,and easily implementable for enhancing heavy metal removal.This study provides a valuable reference for improving the efficiency of chemical washing for heavy metal-contaminated clayey soils. 展开更多
关键词 chemical washing contact angle heavy metal remediation efficiency soil remediation surface tension VISCOSITY WETTABILITY
原文传递
Multifunctional shape-memory smart window based on femtosecond-laser-printed photothermal microwalls
14
作者 Chao Chen Sijia Guo +7 位作者 Long Zhang Hao Yao Bingrui Liu Chenchu Zhang Yachao Zhang Zhaoxin Lao Sizhu Wu Dong Wu 《International Journal of Extreme Manufacturing》 2025年第1期567-578,共12页
Smart windows(SWs)garner significant potential in green buildings owing to their capability of on-demand tuning the solar gains.Apart from solar regulation,people always desire a type of slippery SW which can repel th... Smart windows(SWs)garner significant potential in green buildings owing to their capability of on-demand tuning the solar gains.Apart from solar regulation,people always desire a type of slippery SW which can repel the surface hydrous contaminants for anti-fouling application.Unfortunately,the up-to-date slippery SWs that respond to electrical/thermal stimuli have drawbacks of inferior durability and high energy-consumption,which greatly constrain their practical usability.This article presents our current work on an ultra-robust and energy-efficient near-infrared-responsive smart window(NIR-SW)which can regulate the optical transmittance and droplet’s adhesion in synergy.Significantly,laser-printing strategy enables us to seed the shape-memory photothermal microwalls on a transparent substrate,which can promote daylighting while maintaining privacy by near-infrared(NIR)switching between being transparent and opaque.As a light manipulator,it turns transparent with NIR-activated erect microwalls like an open louver;however,it turns opaque with the pressure-fixed bent microwalls akin to a closed louver.Simultaneously,the droplets can easily slip on the surface of erect microwalls similar to a classical lotus effect;by contrast,the droplets will tightly pin on the surface of bent microwalls analogous to the prevalent rose effect.Owing to shape-memory effect,this optical/wettability regulation is thus reversible and reconfigurable in response to the alternate NIR/pressure trigger.Moreover,NIR-SW unfolds a superior longevity despite suffering from the raindrop’s impacting more than 10000 cycles.Remarkably,such a new-type SW is competent for thermal management,anti-icing system,peep-proof screen,and programmable optics.This work renders impetus for the researchers striving for self-cleaning intelligent windows,energy-efficient greenhouse,and so forth. 展开更多
关键词 femtosecond laser slippery surface photothermal microwalls controllable wettability switchable transparency
在线阅读 下载PDF
Pore‑scale flow mechanism of immiscible gas‑assisted gravity drainage in strongly heterogeneous glutenite reservoirs
15
作者 Liu Yang Yan Liu +5 位作者 Wendong Wang Mingjun Li Suling Wang Benchao Xu Yongmin Shi Hao Chen 《International Journal of Coal Science & Technology》 2025年第1期246-262,共17页
Tight glutenite reservoirs are known for strong heterogeneity,complex wettability,and challenging development.Gas-Assisted Gravity Drainage(GAGD)technology has the potential to significantly improve recovery efficienc... Tight glutenite reservoirs are known for strong heterogeneity,complex wettability,and challenging development.Gas-Assisted Gravity Drainage(GAGD)technology has the potential to significantly improve recovery efficiency in glutenite reservoir.However,there is currently limited research on GAGD processes specifically designed for glutenite reservoirs,and there is a lack of relevant dimensionless numbers for predicting recovery efficiency.In this study,we developed a theoretical model based on the characteristics of glutenite reservoirs and used phase-field method to track the oil-gas interface for numerical simulations of dynamic GAGD processes.To explore the factors influencing gas-driven recovery,we simulated the effects of strong heterogeneity and dynamic wettability on the construction process under gravity assistance.Additionally,we introduced multiple dimensionless numbers(including capillary number,viscosity ratio,and Bond number)and conducted a series of numerical simulations.The results demonstrate that gravity enhances the stability of the oil-gas interface but causes unstable pressure fluctuations when passing through different-sized throat regions,particularly leading to front advancement in smaller throats.Although strong heterogeneity has negative impacts on GAGD,they can be mitigated by reducing injection velocity.Increasing oil-wettability promotes oil displacement by overcoming capillary forces,particularly in narrower pores,allowing residual oils to be expelled.Among the dimensionless numbers,the recovery efficiency is directly proportional to the Bond number and inversely proportional to the capillary number and viscosity ratio.Through sensitivity analysis of the dimensionless numbers’impact on the recovery efficiency,a new dimensionless N_(Glu) considering heterogeneity is proposed to accurately predict GAGD recovery of tight glutenite reservoirs. 展开更多
关键词 Gas-assisted gravity drainage GLUTENITE Structure heterogeneity Wettability heterogeneity Phase field method
在线阅读 下载PDF
Intermediate-high frequency dielectric permittivity of oil-wet rock and the wettability characterization
16
作者 Pei-Qiang Zhao Yu Chen +3 位作者 Yu-Ting Hou Xiu-Ling Chen Wei Duan Shi-Zhen Ke 《Petroleum Science》 2025年第4期1485-1496,共12页
Wettability has complex effects on the physical properties of reservoir rocks.The wettability of rocks should be characterized accurately to explore and develop oil and gas.Researchers have studied the rock wettabilit... Wettability has complex effects on the physical properties of reservoir rocks.The wettability of rocks should be characterized accurately to explore and develop oil and gas.Researchers have studied the rock wettability by dielectric spectra which contained abundant information.To study the rock wettability from dielectric dispersion,four rock samples with different wettabilities were used to design an experimental measurement flow.The relative dielectric permittivity in the frequency range of 100 Hz-10MHz and nuclear magnetic resonance T_(2)spectra of the samples were obtained.Subsequently,the wettabilities of the rocks were verified by the T_(2)spectra.The dielectric dispersions of the samples under different conditions were analyzed.Furthermore,the simulated-annealing(SA)algorithm was used to invert the wettability and related parameters of the rocks by a dielectric dispersion model.The results indicated that the dielectric permittivity of lipophilic rocks is lower than that of hydrophilic rocks,and that the dielectric permittivity of hydrophilic rocks decreases faster as the frequency increases.The dielectric permittivity in the high-frequency band is associated with the water content.The rock wettability parameters obtained via inversion agreed well with the T_(2)spectra,and the saturation index of the rocks.The errors between the rock permittivity calculated by the inverted parameters and the experimentally measured values were minor,indicating that rock wettability could be accurately characterized using dielectric dispersion data. 展开更多
关键词 WETTABILITY Dielectric permittivity NMR T2 spectra Simulated annealing
原文传递
Effect of SurfaceWettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe
17
作者 Wei Zhang Haojie Chen +1 位作者 Kunyu Cheng Yulong Zhang 《Frontiers in Heat and Mass Transfer》 2025年第1期361-381,共21页
The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation secti... The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation section paired with superhydrophilic,superhydrophobic,and hybrid condensation section).The Volume of Fluid(VOF)model was utilized to capture the phase-change process within the PHPs.The study also evaluated the influence of surface wettability on fluid patterns and thermo-dynamic heat transfer performance under various heat fluxes.The results indicated that the effective nucleation and detachment of droplets are critical factors influencing the thermal performance of the PHPs.The overall heat transfer performance of the superhydrophobic surface was significantly improved at low heat flux.Under medium to high heat flux,the superhydrophilic condensation section exhibits a strong oscillation effect and leads to the thickening of the liquid film.In addition,the hybrid surface possesses the heat transfer characteristics of both superhydrophilic and superhydrophobic walls.The hybrid condensation section exhibited the lowest thermal resistance by 0.45 K/W at the heat flux of 10731 W/m^(2).The thermal resistance is reduced by 13.1%and 5.4%,respectively,compared to the superhydrophobic and superhydrophilic conditions.The proposed surface-modification method for achieving highly efficient condensation heat transfer is helpful for the design and operation of device-cooling components. 展开更多
关键词 Pulsating heat pipe surface wettability flow pattern heat transfer enhancement
在线阅读 下载PDF
Surface controllable wettability using amphiphilic rotaxane molecular shuttles
18
作者 Dongpu Wu Zheng Yang +6 位作者 Yuchen Xia Lulu Wu Yingxia Zhou Caoyuan Niu Puhui Xie Xin Zheng Zhanqi Cao 《Chinese Chemical Letters》 2025年第2期394-397,共4页
Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement w... Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement were performed to prove the successful immobilization.The amphiphilic [2]rotaxane functionalized surface presented controllable wettability responding to external acid-base stimuli.This bistable rotaxane modified material system promoted the practical application of molecular machines. 展开更多
关键词 rotaxane Controllable wettability STIMULI-RESPONSIVE
原文传递
Innovative Porous Alumina Ceramics with Dual Wettability for Efficent Oil/Water Separaton
19
作者 ZHANG Zhengyi YU Jiajie +4 位作者 SU Huanhuan SHI Lifen FANG Shuqing WANG Tianhe PENG Xiaobo 《Journal of Wuhan University of Technology(Materials Science)》 2025年第6期1632-1641,共10页
We presented a novel porous alumina ceramics(PACs)with superoleophilicity and superoleo-phobicity when immersed in different oil-water environments.The wettability,separation efficiency,permeation flux and reusability... We presented a novel porous alumina ceramics(PACs)with superoleophilicity and superoleo-phobicity when immersed in different oil-water environments.The wettability,separation efficiency,permeation flux and reusability of the PACs for oil/water separation were investigated and characterized via extensive ex-periments.The PACs material had favourable properties including mechanical strength and chemical durability compared with fabric-based materials and organic sponge-based materials previously reported in literature for oil/water separation.It is believed that the PACs material and methodology presented in this work may provide wastewater remediation industry with a promising alternative for dealing with the catastrophic ocean oil pollu-tion and other oil contamination. 展开更多
关键词 porous alumina ceramics oil/water separation dual wettability superoleophilicity and su-peroleophobicity high compression strength
原文传递
Evaluation of micro-dispersion on oil recovery during low-salinity water-alternating-CO_(2)processes in sandstone cores:An integrated experimental approach
20
作者 Jia-Xin Wang Leng Tian +5 位作者 Can Huang Xiao-Jiao Deng Daoyong Tony Yang Rui-Heng Wang Jia-Hao Lin Jin-Yang Wei 《Petroleum Science》 2025年第1期277-295,共19页
Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not ... Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not been well understood due to the nature of these two fluids and their physical reactions in the presence of reservoir fluids and porous media.In this work,well-designed and inte-grated experiments have been performed for the first time to characterize the in-situ formation of micro-dispersions and identify their EOR roles during a LSW-alternating-CO_(2)(CO_(2)-LSWAG)process under various conditions.Firstly,by measuring water concentration and performing the Fourier transform infrared spectroscopy(FT-IR)analysis,the in-situ formation of micro-dispersions induced by polar and acidic materials was identified.Then,displacement experiments combining with nuclear magnetic resonance(NMR)analysis were performed with two crude oil samples,during which wettability,interfacial tension(IFT),CO_(2) dissolution,and CO_(2) diffusion were quantified.During a CO_(2)-LSWAG pro-cess,the in-situ formed micro-dispersions dictate the oil recovery,while the presence of clay minerals,electrical double-layer(EDL)expansion and multiple ion exchange(MIE)are found to contribute less.Such formed micro-dispersions are induced by CO_(2) via diffusion to mobilize the CO_(2)-diluted oil,alter the rock wettability towards more water-wet,and minimize the density contrast between crude oil and water. 展开更多
关键词 Low-salinity water-alternating-CO_(2)process Micro-dispersion Wettability alteration Clay minerals Electrical double-layer Multiple ion exchange
原文传递
上一页 1 2 24 下一页 到第
使用帮助 返回顶部